首页|后期维特根斯坦对数学逻辑主义的批判——兼论数学哲学研究新途径的可能性

后期维特根斯坦对数学逻辑主义的批判——兼论数学哲学研究新途径的可能性

扫码查看
后期维特根斯坦对数学逻辑主义的批判,既是其语言批判思想在数学领域的应用,也是其数学哲学思想的重要组成部分.该批判包括三重维度:(1)重新明确数学本性,坚信数学既非关于抽象对象的知识体系,亦非以逻辑演绎为核心的科学,而是由一系列计算、推理等具体实践构成的技术;(2)重新审视命题建构论,主张数学命题不是在固定逻辑规则下形成的机械复制产物,相反,数学命题的建构遵循动态的语法规则,并在语言的实践中展现出无限的创造性;(3)重新评估证明方式,强调数学证明旨在以图画的形式直观地呈现命题转换过程,而不是通过严密的逻辑推理获得最终结果.从某种意义上说,上述批判在解构数学逻辑主义的同时,也重构了数学哲学的论域,具体表现在维特根斯坦从日常语言分析的角度对数学进行了开创性的解读:数学是一种语言游戏.理解数学,或者说参与数学语言游戏的前提是遵守语法规则.然而,语法规则并不是不言自明的绝对真理,而是通过共同体内的社会实践才具有意义,并在此过程中达成共识.换言之,数学是一种规范化的、同时又受规则支配的实践活动.这不仅挑战了传统的数学观念,还将数学置于更广阔的社会实践网络中加以考察,从而开启了数学哲学研究新途径的可能性.
Later Wittgenstein's Criticism of Mathematical Logicism——On the Possibility of New Ways of Mathematical Philosophy Research
Later Wittgenstein's criticism of mathematical logicism is not only the application of his language criti-cism thought in the field of mathematics,but also an important part of his mathematical philosophy.This critique includes three dimensions:(1)redefining the nature of mathematics,and firmly believing that mathematics is nei-ther a knowledge system about abstract objects nor a science centered on logical deduction,but a technology com-posed of a series of concrete practices such as calculation and reasoning;(2)re-examining propositional con-structivism and assert that mathematical propositions are not mechanical replicas formed under fixed logical rules.On the contrary,the construction of mathematical propositions follows the dynamic grammatical rules and shows infinite creativity in the practice of language;(3)re-evaluating the proof method,emphasizing that mathematical proof aims to visually present the propositional transformation process in the form of pictures,rather than to obtain the final result through rigorous logical reasoning.In a sense,the above criticism not only deconstructs mathemati-cal logicism,but also reconstructs the field of mathematical philosophy,which is concretely reflected in Wittgen-stein's pioneering interpretation of mathematics from the perspective of everyday language analysis:mathematics is a language game.To understand mathematics,or to participate in mathematical language games,is to follow the rules of grammar.Grammatical rules,however,are not self-evident absolute truths,but take on meaning through social practice within the community,and consensus is reached in the process.In other words,mathematics is a standardized and rule-governed practice.This not only challenges the traditional concept of mathematics,but also places mathematics in a broader network of social practice,thus opening up the possibility of a new approach to the study of mathematical philosophy.

later Wittgensteinmathematical logicismphilosophy of mathematicsproposition constructionmathematical proof

徐晟程、管月飞

展开 >

安徽师范大学 马克思主义学院,安徽 芜湖 241002

后期维特根斯坦 数学逻辑主义 数学哲学 命题建构 数学证明

2024

安徽理工大学学报(社会科学版)
安徽理工大学

安徽理工大学学报(社会科学版)

CHSSCD
影响因子:0.233
ISSN:1672-1101
年,卷(期):2024.26(6)