首页|带有扰动观测器的智能车队分布式协同控制

带有扰动观测器的智能车队分布式协同控制

Distributed Cooperative Control for Intelligent Vehicular Platoons with Disturbance Observer

扫码查看
目的 为了研究含有未知外部扰动和未知非线性项的领航车辆和跟随车辆的同质车队控制问题,实现车队协同控制并达到车队控制目标,以解决交通拥堵、减少尾气排放和提高道路交通容量.方法 本文提出一种新的分布式车队协同滑模控制策略,结合车辆间距策略和通信拓扑结构,确保车队的稳定性以及间距误差和速度误差的收敛性.针对车辆动力学模型中的未知非线性项,提出分布式神经网络自适应律,用于估计和补偿系统中未知非线性项的影响.并且,由于车队系统不可避免地会受到外部扰动的影响,设计扰动观测器并调整其参数,以逼近系统的实际外部扰动.结果 通过Lyapunov稳定性分析证明分布式车队控制策略的正确性和有效性,并通过相应的车队控制实例进行验证.结论 所提出的分布式协同滑模控制策略和分布式神经网络自适应律能够有效实现车队协同,保证系统的快速响应、稳定性和鲁棒性.
Objective To investigate the control of homogeneous vehicle platoons,including leader and follower ve-hicles with unknown external disturbances and nonlinearities so as to achieve cooperative control of the platoon of dealing with the traffic congestion,reduce exhaust emissions,and increase road capacity.Methods A novel distrib-uted cooperative sliding mode control strategy was proposed,integrating vehicle spacing strategies and communi-cation topology to ensure the stability of the platoon and the convergence of spacing and velocity errors.To ad-dress the unknown nonlinearities in the vehicle dynamics model,the distributed neural network adaptive law was introduced to estimate and compensate for the effects of these nonlinearities.Additionally,since the platoon sys-tem was inevitably affected by external disturbances,the disturbance observer was designed and its parameters were adjusted to approximate the actual external disturbances in the system.Results The correctness and effective-ness of the proposed distributed platoon control strategy were demonstrated through Lyapunov stability analysis and corresponding platoon control examples.Conclusion The proposed distributed cooperative sliding mode control strategy and the distributed neural network adaptive law effectively achieve the platoon synchronization,ensuring quick response,stability,and robustness of the system.

intelligent platoondistributed cooperative controldisturbance observerneural adaptive

董晖、杨超宇、刘宇宁

展开 >

桂林理工大学机械与控制工程学院,广西 桂林 541006

安徽理工大学人工智能学院,安徽 淮南 232001

山东大学控制科学与工程学院,山东 济南 250003

智能车队 分布式协同控制 扰动观测器 神经网络自适应

国家自然科学基金资助项目

61873004

2024

安徽理工大学学报(自然科学版)
安徽理工大学

安徽理工大学学报(自然科学版)

影响因子:0.331
ISSN:1672-1098
年,卷(期):2024.44(3)