首页|对数Bloch型空间上微分复合算子乘积的本性范数

对数Bloch型空间上微分复合算子乘积的本性范数

Product of Differentiation and Composition Operators on the Logarithmic Bloch Type Space

扫码查看
目的 为刻画微分复合算子乘积CφDm在对数Bloch型空间上的本性范数特征.方法 利用有界序列{zn}n=1刻画对数Bloch型空间上微分复合算子乘积CφDm的有界性特征,以及泛函分析中的算子理论,例如紧算子性质和对本性范数上下界的估计.结果 在CφDm有界的条件下,给出了微分复合算子CφDm的本性范数特征,即这里m为非负正整数,微分复合算子乘积为CφDmf=f(m)°φ.结论 在CφDm有界的条件下,则微分复合算子CφDm的本性范数可由有界序列{zn}n=1的特征刻画.
Objective To characterize the boundedness and essential norms of the product of differentiation and composition operators CφDm on logarithmic Bloch type spaces.Methods A bounded sequence { zn } n=1 was used to characterize the boundedness of the product of differential composite operators CφDm on logarithmic Bloch type spaces and the operator theory in functional analysis,such as the properties of compact operators.Results The es-sential norm of the product of differentiation and composition operators CφDm on the logarithmic Bloch type was obtained.Here m is a nonnegative positive integer,and the product of the differentiation and composition operator CφDm is defined by CφDmf=f(m)°φ.Conclusion If the product of differential composite operators CφDm on logarith-mic Bloch type spaces is bounded,the essential norm of C Dm may be characterized by the characteristics of the bounded sequence { zn}.

Logarithmic a-Bloch spacecomposition operatorsdifferential operatorboundednessessential norms

周继振、王青青

展开 >

安徽理工大学数学与大数据学院,安徽 淮南 232001

对数a-Bloch空间 复合算子 微分算子 有界性 本性范数

国家自然科学基金资助项目

11801347

2024

安徽理工大学学报(自然科学版)
安徽理工大学

安徽理工大学学报(自然科学版)

影响因子:0.331
ISSN:1672-1098
年,卷(期):2024.44(3)