首页|基于CatBoost模型的采煤沉陷水域水体深度反演

基于CatBoost模型的采煤沉陷水域水体深度反演

Inversion of Water Depth in Coal Mining Subsidence Waters Based on CatBoost Modelling

扫码查看
目的 长期煤炭开采在两淮矿区造成了显著的地表沉陷和水体形成,这使得精确测量水深对于合理利用水资源变得至关重要,使用遥感反演水深的方法可高效便捷获取大范围水深数据.方法 提出了一种多源数据融合反演模型,通过整合Sentinel-2卫星遥感资料与无人船采集的水深数据,分别建立了基于单一波段、多波段以及对数比值的模型分析方法.通过CatBoost机器学习算法分别对3种传统模型中拟合效果最佳的模型进行优化.结果 经过实验验证,发现绿色单波段模型、多波段模型以及绿色与红色比值对数模型的拟合优度分别达到了0.675、0.692和0.260;均方根误差分别为2.40、2.34和3.62m.在采用CatBoost机器学习算法进行优化后,传统模型的反演精度均有提升.拟合优度分别为0.755、0.762、0.386;均方根误差分别为2.03、1.96和3.17m;CatBoost单波段模型在4~12m区间反演精度最高,CatBoost多波段模型在0~4m及12~16m有最高的反演精确性.结论 研究证明,采用的多源数据融合技术能够有效提升水深反演的精度,为矿区水域治理及水资源管理提供了科学依据,展示了其在环境监测和资源管理中的潜在应用.
Objective Long-term coal mining has caused significant surface subsidence and water resources forma-tion in the Huainan and Huaibei mining areas,which makes accurate measurement of water depth crucial for ra-tional utilization of water resources.Methods The method of remote sensing inversion of water depth can efficient-ly and conveniently obtain large-scale water depth data.In this study,a multi-source data fusion inversion model was proposed.By integrating Sentinel-2 satellite remote sensing data and water depth data collected by unmanned ships,model analysis methods based on single band,multi-band and logarithmic ratio were established respec-tively.The CatBoost machine learning algorithm was used to optimize the model with the best fitting results among the three conventional models.Results Through experimental verification,it was found that the goodness of fit of the green single-band model,the multi-band model and the green and red ratio logarithmic model were 0.675,0.692 and 0.260 respectively.The root mean square error were 2.40,2.34 and 3.62m respectively.After theop-timizationby using the CatBoost machine learning algorithm,the inversion accuracy of the traditional model was improved.The goodness of fit was 0.755,0.762 and 0.386 respectively.The root mean square error were 2.03,1.96 and 3.17m respectively.The CatBoost single-band model had the highest inversion accuracy in the 4~12m interval,and the CatBoost multi-band model had the highest inversion accuracy in the 0~4m and 12~16m.Conclusion The research proves that the multi-source data fusion technology can effectively improve the accuracy of water depth inversion,provide a scientific basis for water governance and water resources management in min-ing areas and show its potential application in environmental monitoring and resource management.

subsidence watersmulti-spectral remote sensingwater depth inversionsentinel-2machine learning

徐良骥、廉年刚、张坤

展开 >

安徽理工大学空间信息与测绘工程学院,安徽 淮南 232001

安徽理工大学深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001

沉陷水域 多光谱遥感 水深反演 Sentinel-2 机器学习

2024

安徽理工大学学报(自然科学版)
安徽理工大学

安徽理工大学学报(自然科学版)

影响因子:0.331
ISSN:1672-1098
年,卷(期):2024.44(5)