首页|基于改进人工蜂鸟算法的稀布线阵优化

基于改进人工蜂鸟算法的稀布线阵优化

Optimization of Sparse Array Based on Improved Artificial Hummingbird Algorithm

扫码查看
目的 针对多约束稀布直线阵列存在旁瓣电平过大的问题,提出了一种基于改进人工蜂鸟算法的方向图综合方法.方法 新算法通过分段式惯性权重动态调整转换概率来选择引导觅食和领土觅食方法,平衡算法的局部搜索和全局搜索能力;引入了柯西-高斯变异提升算法的抗停滞能力,使算法能够跳出局部最优,极大地提高了优化能力.结果 新算法在给定阵列孔径、阵元数和最小阵元间距等约束下,实现了抑制阵列天线峰值旁瓣电平的稀布直线阵列综合优化.结论 仿真结果表明,与传统方法相比,该方法能够在不同约束条件下得到更低的峰值旁瓣电平,新算法拥有更好的寻优能力和稳定性.最后对实际的阵列天线进行HFSS电磁仿真,并在仿真中得到了卓越的结果,进一步证明了所提方法的可行性.
Objective To solve the problem of excessive sidelobe level in multi-constrained sparse linear arrays,the direction map synthesis method based on the improved artificial hummingbird algorithm was proposed.Methods The new algorithm dynamically adjusteds the transition probability to select the guided foraging and territorial for-aging methods through segmented inertia weights,balancing the local and global search capabilities of the algo-rithm.the Cauchy-Gaussian variation was introduced to enhance the anti-stagnation capability of the algorithm so that the algorithm was able to get rid of the tie of local optimum,which greatly improved the optimization capabili-ty.Finally,HFSS electromagnetic simulation was performed on a real array antenna and the excellent results were obtained.Results The new algorithm achieved the comprehensive optimization of sparse linear arrays for suppress-ing the peak sidelobe level of the array antenna under the constraints of the given array aperture,the number of array elements and the minimum spacing of the array elements.Conclusion Compared with the traditional method,the method here is able to obtain lower peak sidelobe levels under different constraints,and the new algorithm possesses better optimization ability and stability.

array antennassparse linear arrayartificial hummingbird algorithmpeak sidelobe levelHFSS electromagnetic simulation

王仲根、吕泽耀、林涵、张学军、张仁海

展开 >

安徽理工大学电气与信息工程学院,安徽 淮南 232001

阵列天线 稀布线阵 人工蜂鸟算法 峰值旁瓣电平 HFSS电磁仿真

2024

安徽理工大学学报(自然科学版)
安徽理工大学

安徽理工大学学报(自然科学版)

影响因子:0.331
ISSN:1672-1098
年,卷(期):2024.44(5)