首页|一种BiFPN-YOLOv8铁轨表面缺陷检测网络模型

一种BiFPN-YOLOv8铁轨表面缺陷检测网络模型

扫码查看
针对铁轨表面存在的剥落、孔洞、瘢痕、划痕、裂缝、磨损缺陷,构建了一种BiFPN-YOLOv8 铁轨表面缺陷检测网络模型.在数据准备中,通过Gauss噪声变换和水平变换进行铁轨表面图像数据增强;在网络构建中,通过在原YOLOv8 网络模型中引入加权双向金字塔结构BiFPN构建BiFPN-YOLOv8 网络模型用于提升铁轨表面缺陷检测性能;在实验仿真中,通过在RSDDs数据集上定量的对比和定性的检测结果评价,验证了BiFPN-YOLOv8 网络模型在铁轨表面缺陷检测任务上的精准性和适用性.
A BiFPN-YOLOv8 for Rail Surface Defect Detection Network Model
Aiming to defect such as peeling,holes,scars,scratches,cracks and wear on the rail surface,a BiFPN-YOLOv8 rail surface defect detection network model is constructed.In the data preparation phase,the rail surface image data is augmented through Gauss noise transformation and rotation transformation;In the network construction phase,in order to improve the performance of rail surface defect detection,the BiFPN-YOLOv8 is constructed by introducing the weighted bidirectional pyramid structure BiFPN into the original YOLOv8 network model;In the experimental simulation phase,the quantitative comparison and qualitative detection result evaluation on the RSDDs data set illustrates the accuracy and applicability of the BiFPN-YOLOv8 network model in the rail surface defect detection task.

rail surfacedefect detectionBiFPN-YOLOv8

冯庆贺、江铭凯、郝巧红、赵晓蕾、赵强、杨富超

展开 >

河南工学院 智能工程学院,河南 新乡 453003

中国电波传播研究所,山东 青岛 266107

铁轨表面 缺陷检测 BiFPN-YOLOv8

河南省重点研发与推广专项(科技攻关)项目河南省重点研发与推广专项(科技攻关)项目河南省国际科技合作项目

232102210094222102210291242102520036

2024

河南工学院学报
河南机电高等专科学校

河南工学院学报

影响因子:0.182
ISSN:2096-7772
年,卷(期):2024.32(3)