首页|基于神经网络的复合材料层合板低速冲击损伤面积预测方法

基于神经网络的复合材料层合板低速冲击损伤面积预测方法

扫码查看
目前,复合材料层合板在船舶领域得到广泛应用,但在其遭受低速冲击时,传统试验和有限元方法无法真实、有效地描绘实际损伤情况.为此,结合低速冲击实验结果和超声水浸扫描结果,建立了BPNN、CNN的等效冲击损伤预测模型,以快速预测复合材料层合板在冲击过程中的损伤情况.在使用试验样本数据模型进行训练后,其能够高效准确预测复合材料层合板损伤面积.该方法简单实用,可以推广使用.
Neural Network-based Prediction Method for Low-speed Impact Damage Area in Composite Materials
Currently,composite laminates are widely utilized in the maritime sector.However,traditional experimental and finite element methods fail to accurately depict the actual damage situation when subjected to low-speed impacts.To address this issue,an equivalent impact damage prediction model based on BP neural network and CNN neural network is established by integrating low-speed impact test results and ultrasonic immersion scanning results.This model enables rapid prediction of the damage status of composite laminate structures during impact events.After training the model using experimental sample data,it efficiently and accurately predicts the damage area of composite laminates.This method is simple,practical,and can be widely applied.

composite materialslow-speed impactneural networkdamage area

卓嘉永、倪楷文、陈清林、彭苗娇

展开 >

集美大学 轮机工程学院,福建 厦门 361021

福建省船舶与海洋工程重点实验室,福建 厦门 361021

复合材料 低速冲击 神经网络 损伤面积

福建省科技攻关项目福建省科技攻关项目福建省科技厅对外合作项目

2021J051642021J018442022I0019

2024

河南工学院学报
河南机电高等专科学校

河南工学院学报

影响因子:0.182
ISSN:2096-7772
年,卷(期):2024.32(3)