首页|基于长短时记忆网络的恒温水浴锅温度模型预测

基于长短时记忆网络的恒温水浴锅温度模型预测

扫码查看
[目的]由于恒温水浴锅温度系统存在强非线性及大滞后性,本研究提出一种基于长短时记忆网络的恒温水浴锅温度模型预测方法.[方法]首先,对采集到的数据进行标准化处理,寻找长短时记忆网络的最优结构及超参数,用来拟合出最佳的数据映射特征,并构建恒温水浴锅温度的动态数学模型.其次,通过模型对未来一段时间内的温度趋势进行预测.最后,使用本研究提出的方法与最小二乘法所预测的结果进行对比分析.[结果]本研究所提方法构建的模型的拟合度达到了98.2%,预测结果的MSE及MAE比最小二乘法模型分别降低了4.616、0.823.[结论]本研究所提方法具有更高的预测精度,对提高恒温水浴锅的生产效率及控制精度具有重要意义.
Temperature Model Prediction of Thermostatic Water Bath Based on Long Short-term Memory Network
[Purposes]Since the temperature system of thermostatic water bath has the characteristics of strong nonlinearity and large lag,this study proposes a temperature model prediction method of thermo-static water bath based on long short-term memory network.[Methods]Firstly,the collected data were stan-dardized to find the optimal structure and hyperparameters of the long short-term memory network,which were used to fit the best data mapping characteristics and construct a dynamic mathematical model of the temperature of the thermostatic water bath.Secondly,the temperature trend in the future is predicted by the model.Finally,the results predicted by the method proposed in this study are compared with those predicted by the least squares method.[Findings]The fitting degree of the model constructed by the method proposed in this study reached 98.2%,and the MSE and MAE of the prediction results were 4.616 and 0.823 lower than those of the least squares model,respectively.[Conclusions]The method proposed in this study has higher prediction accuracy,which is of great significance to improve the production efficiency and control accuracy of thermostatic water bath.

thermostatic water bathLSTMtemperature predictionmathematical model

高兴泉、俞文博、段虹州

展开 >

吉林化工学院,吉林 吉林 132022

吉林工业职业技术学院,吉林 吉林 132013

恒温水浴锅 长短时记忆网络 温度预测 数学模型

吉林省教育厅"十三五"科学技术项目

JJKH20200252K

2024

河南科技
河南省科学技术信息研究院

河南科技

影响因子:0.615
ISSN:1003-5168
年,卷(期):2024.51(2)
  • 14