首页|基于改进YOLOv5s的车辆检测研究

基于改进YOLOv5s的车辆检测研究

扫码查看
[目的]针对目标检测算法在车辆检测领域中应用时存在模型复杂、检测精度较低的问题,基于改进YOLOv5s算法开展车辆检测研究.[方法]以Ghost模块来替换YOLOv5s中的主干网络,以达到模型剪枝的目的,改进后的网络模型复杂度有所降低,从而解决了网络模型较大的问题.同时,可引入挤压—激励注意力机制来提取更重要的特征信息,达到提高检测精度的目的.本研究所用到的数据集均为汽车图像,车辆检测数据集共有12 786张图片,将该数据集按照8∶1∶1的比例进行划分.其中,训练集为10 228张,测试集和验证集均为1 279张,采用对比试验法进行研究.[结果]试验结果表明,与原有的YOLOv5s相比,改进后的网络模型在车辆检测数据集上的平均准确率均值提升3%,查准率和召回率分别提升1.9%和3.2%,模型大小下降42%.[结论]改进后的网络模型有效降低了模型的复杂度,提高了检测精度,并节约成本.
Research on Vehicle Detection Based on Improved YOLOv5s
[Purposes]Aiming at the problems of complex model and low detection accuracy of the cur-rent object detection algorithm in the field of vehicle detection,a vehicle detection research based on im-proved YOLOv5s is carried out.[Methods]The Ghost module was replaced with the original YOLOv5s backbone network to achieve the purpose of model pruning,which reduced the complexity of the im-proved network model and solved the problem of large network model;Then the Squeeze and Excitation attention mechanism is introduced to extract more important feature information to improve detection ac-curacy.The data sets used in this study are all images of cars,and on the vehicle detection dataset,a to-tal of 12 786 pictures,the dataset is divided into 8∶1∶1.And among them,the training set is 10 228 pic-tures,the test set and verification set are 1 279 pictures and the method of comparative experiment was used in this study.[Findings]Experimental results show that compared with the original YOLOv5s,the average accuracy of the improved network model is increased by 3%,the accuracy and recall rate are in-creased by 1.9%and 3.2%,respectively,and the model size is reduced by 42%.[Conclusions]The im-proved network model effectively reduces the complexity of the model,saves costs and improves the de-tection accuracy.

deep learningobject detectionattention mechanismYOLOv5s

肖的成、李艳生

展开 >

湖北师范大学物理与电子科学学院,湖北 黄石 435002

深度学习 目标检测 注意力机制 YOLOv5s

2024

河南科技
河南省科学技术信息研究院

河南科技

影响因子:0.615
ISSN:1003-5168
年,卷(期):2024.51(4)
  • 14