首页|基于监督学习与深度强化学习的任务型对话模型设计与实现

基于监督学习与深度强化学习的任务型对话模型设计与实现

扫码查看
[目的]探讨智能对话系统中任务型对话模型的设计,提出一个基于监督学习和强化学习的任务型对话系统框架.[方法]采用监督学习和强化学习相结合的方法.首先,将开放域对话模型的生成回复嵌入到任务型回复的过程中,构建一个综合的对话模型.其次,利用监督学习和迁移学习的方法,构建对话策略模型,用于指导对话系统的决策过程.最后,采用深度强化学习算法进行优化更新,以提高对话系统的性能.[结果]实验结果表明,任务型对话系统模型在评估指标BLEU、ROUGE和F1分数方面优于其他基准模型.该模型具备良好的对话生成能力和回复多样性,能够生成准确且多样化的回复.[结论]通过综合应用监督学习和强化学习的方法,成功设计了一个基于任务型对话模型的智能对话系统框架.该框架在任务型对话上取得了较好的性能,为智能对话系统的发展提供了有益的探索.
Design and Implementation of a Task-Oriented Dialogue Model Based on Supervised Learning and Deep Reinforcement Learning
[Purposes]This study aims to explore the design of task-oriented dialogue models in intelligent conversational systems and propose a task-oriented dialogue system framework based on supervised learning and reinforcement learning.[Methods]The study adopts a combined approach of supervised learning and reinforcement learning.Firstly,the generation replies from open-domain dialogue models are incorporated into the task-oriented dialogue process,constructing a comprehensive dialogue model.Then,using methods of supervised learning and transfer learning,a dialogue policy model is constructed to guide the decision-making process of the dialogue system.Finally,deep reinforcement learning algorithms are employed for optimization and updates to enhance the performance of the dialogue system.[Findings]Experimental results demonstrate that the task-oriented dialogue system model outperforms other baseline models in evaluation metrics such as BLEU,ROUGE,and F1 scores.The model exhibits good dialogue generation capabilities and response diversity,generating accurate and diverse replies.[Conclusions]The study successfully designs an intelligent dialogue system framework based on task-oriented dialogue models by integrating supervised learning and reinforcement learning.The framework shows promising performance in task-oriented dialogue tasks,providing valuable exploration for the development of intelligent conversational systems.

task-oriented dialogue systemsupervised learningreinforcement learning

李昱珩、朱彦霞

展开 >

华东师范大学数学科学学院,上海 200241

河南省职工医院,河南 郑州 450000

任务型对话系统 监督学习 强化学习

河南省软科学研究计划河南省软科学研究计划河南省软科学研究计划河南省医学科技攻关计划河南省重点研发与指导专项科技攻关计划

222400410151222400410184232400411123LHGJ20220248232102310491

2024

河南科技
河南省科学技术信息研究院

河南科技

影响因子:0.615
ISSN:1003-5168
年,卷(期):2024.51(6)
  • 17