首页|基于时频域特征和朴素贝叶斯的滚动轴承故障诊断方法研究

基于时频域特征和朴素贝叶斯的滚动轴承故障诊断方法研究

扫码查看
[目的]为了解决滚动轴承故障特征提取困难、诊断性能偏低的问题,提出了一种基于时频域特征和朴素贝叶斯的故障诊断方法.[方法]首先,通过局部均值分解方法对原始振动信号进行处理,获得多个乘积函数分量.其次,基于原始振动信号和各个乘积函数分量,提取时频域特征,并采用主成分分析实现特征降维,获得低维敏感特征.最后,依据低维敏感特征集,结合朴素贝叶斯模型,实现对江南大学—机械工程学院滚动轴承数据集的分析.[结果]实验结果表明,该方法相较于传统朴素贝叶斯准确率高39.49%,相较于主成分分析准确率高5.94%,由此得出该方法对滚动轴承故障的诊断表现较好.[结论]对于传统的单一的故障诊断模型,基于时频域特征和朴素贝叶斯的故障诊断模型具有更高的准确率,解决了滚动轴承故障特征提取困难、诊断性能偏低的问题.
Research on Fault Diagnosis Method for Rolling Bearings Based on Time Frequency Domain Features and Naive Bayes
[Purposes]In order to solve the problems of difficult feature extraction and low diagnostic per-formance of rolling bearings,a fault diagnosis method based on time-frequency domain features and na-ive Bayes is proposed.[Methods]This method first processes the original vibration signal through local mean decomposition to obtain multiple product function(PF)components.Secondly,based on the origi-nal vibration signal and various PF components,time-frequency domain features are extracted,and prin-cipal component analysis is used to achieve feature dimension reduction,obtaining low dimensional sen-sitive features.Finally,based on the low dimensional sensitive feature set and combined with the naive Bayesian model,the analysis of the rolling bearing dataset from Jiangnan University School of Mechani-cal Engineering is achieved.[Findings]The experimental results show that the accuracy of this method is 39.49%higher than that of traditional naive Bayes,and 5.94%higher than that of principal component analysis.Therefore,it can be concluded that this method performs well in diagnosing rolling bearing faults.[Conclusions]Compared to traditional single fault diagnosis models,fault diagnosis models based on time-frequency domain features and naive Bayes have higher accuracy and solve the problems of diffi-cult feature extraction and low diagnostic performance in rolling bearing faults.

rolling bearingstime-frequency domain featureslocal mean decompositionprincipal com-ponent analysisnaive bayes

温翔采、张清华、胡勤、刘迪洋

展开 >

吉林化工学院,吉林 吉林 132000

广东石油化工学院,广东 茂名 525000

滚动轴承 时频域特征 局部均值分解 主成分分析 朴素贝叶斯

2024

河南科技
河南省科学技术信息研究院

河南科技

影响因子:0.615
ISSN:1003-5168
年,卷(期):2024.51(7)