首页|关中平原耕地RS影像精准提取方法研究

关中平原耕地RS影像精准提取方法研究

扫码查看
[目的]高效获取大面积耕地影像分布数据,助力关中平原地区耕地保护动态监测和管理.[方法]以陕西省西安市临潼区为研究区,基于SNAP平台和ENVI处理软件,使用监督分类中的最大似然分类法对哨兵二号高分辨率遥感影像耕地RS(Remote Sensing)遥感数据进行识别提取,获取耕地空间分布及面积等地理信息.[结果]提取耕地总面积为411.57 km2,主要分布于临潼区北部相桥、交口、栋阳等街道及中东部何寨、零口街道等平缓地区,与官方统计面积相近,误差仅为0.92%,提取总体分类精度为96.07%,Kappa系数为0.94,符合精度要求.[结论]通过最大似然分类法提取耕地结果与实际数据较为贴合,证明最大似然分类法在实际耕地地类识别检测应用中有着较高的匹配度,可以较为精准地实现土地利用类型识别.
Research on Accurate Extraction Method of RS Image of Cultivated Land in Guanzhong Plain
[Purposes]This paper aims to assist in the dynamic monitoring and management of farmland protection in the Guanzhong Plain region,and efficiently obtain large-scale farmland image distribution data.[Methods]Taking Lintong District,Xi'an City,Shaanxi Province as the research area,and based on the SNAP platform and ENVI processing software,the maximum likelihood classification method in su-pervised classification is used to identify and extract the remote sensing data of remote sensing imagery of Sentinel 2's high-resolution farmland RS(Remote Sensing),and obtain geographic information such as spatial distribution and area of farmland.[Findings]The total area of cultivated land extracted is 411.57 square kilometers,mainly distributed in the northern part of Lintong District,including Xiangq-iao,Jiaokou,Dongyang and other streets,as well as in the gentle areas of Hezhai and Lingkou streets in the central and eastern parts.It is similar to the official statistical area,with an error of only 0.92%.The overall classification accuracy of the extraction is 96.15%,and the Kappa coefficient is 0.94,which meets the accuracy requirements.[Conclusions]The maximum likelihood classification method is more suitable for extracting cultivated land results and actual data,which proves that the maximum likelihood classification method has a high matching degree in the recognition and detection of actual cultivated land types,and can accurately achieve land use type recognition.

maximum likelihood classificationSentinel-2 high-resolution remote sensing imagesculti-vated landENVI

徐清昊、周浩浩

展开 >

长安大学土地工程学院,陕西 西安 710061

最大似然分类法 Sentinel-2高分遥感影像 耕地 ENVI

2024

河南科技
河南省科学技术信息研究院

河南科技

影响因子:0.615
ISSN:1003-5168
年,卷(期):2024.51(9)