首页|基于改进一维卷积神经网络的滚动轴承故障诊断方法

基于改进一维卷积神经网络的滚动轴承故障诊断方法

扫码查看
[目的]为解决传统一维卷积神经网络模型在进行轴承故障诊断时出现过拟合和泛化能力弱的问题,提出了基于改进一维卷积神经网络(1DCNN)的滚动轴承故障诊断方法.[方法]首先,利用全局均值池化层代替传统一维卷积神经网络的全连接层,以减少模型中的参数数量、降低模型复杂度,从而提高卷积神经网络的泛化能力;其次,结合Dropout正则化方法,解决模型过拟合问题;最后,由Softmax分类函数进行分类.[结果]利用凯斯西储大学轴承故障数据集进行验证,结果表明,改进后的1DCNN在进行故障诊断时可以利用相对较少的训练次数就达到较高的准确率和较好的拟合效果,且故障准确率为99.42%.[结论]该方法明显优于传统一维卷积神经网络所呈现的故障诊断效果,对解决实际轴承故障问题具有重要的理论意义和应用价值.
Fault Diagnosis Method of Rolling Bearing Based on Improved One-Dimensional Convolutional Neural Network
[Purposes]To address the issues of overfitting and weak generalization ability when using tra-ditional one-dimensional convolutional neural network models for bearing fault diagnosis,this paper pro-poses an improved one-dimensional convolutional neural network(1DCNN)method for rolling bearing fault diagnosis.[Methods]Firstly,the proposed method utilizes a global average pooling layer to replace the fully connected layer of traditional one-dimensional convolutional neural networks,reducing the number of parameters in the model,decreasing model complexity,and enhancing the generalization abil-ity of the convolutional neural network.Secondly,by combining the Dropout regularization method,the issue of overfitting in the model is addressed.Finally,the classification is performed by the Softmax clas-sification function.[Findings]Using the Case Western Reserve University Bearing Fault Dataset for validation,the results show that the improved 1DCNN can achieve a high accuracy rate and good fitting effect with relatively fewer training iterations during fault diagnosis,with a fault accuracy rate of 99.42%.[Conclusions]This method significantly outperforms the fault diagnosis results presented by traditional one-dimensional convolutional neural networks,and holds important theoretical significance and appli-cation value for solving practical bearing fault problems.

rolling bearings1D convolutional neural networksfault diagnosis

任德珍、张清华

展开 >

吉林化工学院信息与控制工程学院,吉林 吉林 132000

广东石油化工学院自动化学院,广东 茂名 525000

滚动轴承 一维卷积神经网络 故障诊断

2024

河南科技
河南省科学技术信息研究院

河南科技

影响因子:0.615
ISSN:1003-5168
年,卷(期):2024.51(10)
  • 16