首页|基于PSO算法的商旅问题探讨

基于PSO算法的商旅问题探讨

扫码查看
[目的]商旅问题是指商人在访问多个城市时,要求不能走回头路且最终要回到起点,寻求这个过程中最短路径的问题.通过分析旅行商问题,探讨不同算法的应用范围,选择合适的算法来优化解决旅行商问题.[方法]根据目前各种寻优算法的特点,选择粒子群算法作为求优算法来解决商旅问题,并在此基础上进行优化改进.先确定权重因子和加速因子,再根据随机函数对粒子个体和种群进行算法变异,从而实现旅行商问题寻优算法的改进.在此基础上,通过粒子群算法和MATLAB算法编程,以实现优化结果.[结果]通过改进参数和引入变量函数进行寻优算法改进,有利于算法的收敛.[结论]改进后的寻优算法可以快速找到商人旅行过程的最优路径规划.
Discussion on Business Travel Problem Based on PSO Algorithm
[Purposes]The business travel problem refers to the problem of merchants visiting multiple cities,demanding that they cannot turn back and ultimately return to the starting point,seeking the short-est path in this process.This article analyzes the traveling salesman problem,explores the application scope of different algorithms,and selects appropriate algorithms to optimize and solve the traveling sales-man problem.[Methods]Based on the characteristics of various optimization algorithms currently avail-able,particle swarm optimization algorithm is selected as the optimization algorithm to solve the business travel problem.Based on this,optimization and improvement are carried out by first determining the weight factor and acceleration factor,and then using random functions to perform algorithm variation on the individual particles and population,in order to improve the optimization algorithm for the business travel problem.On this basis,we will use particle swarm optimization algorithm and program it through MATLAB algorithm to achieve the implementation of optimization results.[Findings]By improving pa-rameters and introducing variable functions for optimization algorithm improvement,it is beneficial for the convergence of the algorithm.[Conclusions]The improved optimization algorithm can quickly find the optimal path planning for the merchant's travel process.

PSOoptimization problemtraveling salesman problem

韩林萍、朱昊云、谢梦敏、马飞、王明杰

展开 >

河南水利与环境职业学院,河南 郑州 450008

粒子群算法PSO 优化问题 旅行商问题

2024

河南科技
河南省科学技术信息研究院

河南科技

影响因子:0.615
ISSN:1003-5168
年,卷(期):2024.51(10)
  • 6