首页|基于可见光影像的黄河流域(郑州段)植被覆盖反演研究

基于可见光影像的黄河流域(郑州段)植被覆盖反演研究

扫码查看
[目的]寻求一种高效、低廉、准确的植被覆盖反演方法,为其他类似地区的植被覆盖监测提供参考.[方法]以黄河流域(郑州段)为研究区域,采用高分辨率可见光影像作为数据源,开展植被覆盖反演的关键技术研究.通过计算植被覆盖指数和各种算法的准确度,确定最优的可见光影像植被覆盖反演算法.[结果]经过各类植被指数反演算法结果的比对,GLI植被指数算法总体准确度为96.59%,其他3种算法的准确度较低,分别为80.94%、83.3%和83.56%.证明GLI算法可被应用在类似的植被覆盖监测中.[结论]基于无人机可见光影像进行植被覆盖反演是一种低成本、效率高、易操作的方法.
Research on Vegetation Coverage Inversion in the Yellow River Basin(Zhengzhou Section)Based on Visible Light Images
[Purposes]This paper explores an efficient,cost-effective,and accurate vegetation coverage inversion method to provide a reference for vegetation coverage monitoring in other similar regions.[Methods]Taking the Yellow River Basin(Zhengzhou section)as the study area,this research employs high-resolution visible light images as data sources to conduct key technology research on vegetation coverage inversion.By calculating vegetation coverage indices and assessing the accuracy of various algo-rithms,the optimal visible light image-based vegetation coverage inversion algorithm is determined.[Findings]Through the comparison of inversion results using various vegetation indices,the overall accu-racy of the GLI vegetation index algorithm is found to be 96.59%,significantly higher than the other three algorithms with accuracies of 80.94%,83.3%,and 83.56%,respectively,which demonstrates the applicability of the GLI algorithm in similar vegetation coverage monitoring scenarios.[Conclusions]Vegetation coverage inversion based on unmanned aerial vehicle(UAV)visible light imagery represents a low-cost,efficient,and easy-to-operate method.

Yellow River Basinunmanned aerial vehiclesvisible light imagesvegetation coverage

郭雪白、任朝栋

展开 >

河南水利与环境职业学院,河南 郑州 450008

中国电子科技集团公司第二十七研究所,河南 郑州 450047

黄河流域 无人机 可见光影像 植被覆盖

河南省高等学校重点科研项目

24B610006

2024

河南科技
河南省科学技术信息研究院

河南科技

影响因子:0.615
ISSN:1003-5168
年,卷(期):2024.51(13)
  • 9