首页|基于模型预测控制的重载列车轨迹跟踪研究

基于模型预测控制的重载列车轨迹跟踪研究

扫码查看
[目的]为提升重载列车的安全性、平稳性、节能性,减小车钩力,提出了一种基于模型预测控制的重载列车轨迹跟踪方法.[方法]首先,建立考虑车辆间车钩力的重载列车多质点动力学模型;其次,将列车纵向冲动、运行能耗、速度跟踪误差转化为符合模型预测控制框架的问题;最后,设计基于模型预测控制算法的速度跟踪控制器,该控制器以目标速度曲线为输入,列车控制力为输出.[结果]提出了以提高参考速度曲线跟踪精度、减小车钩力冲动和降低列车运行能耗为目标的模型预测控制算法.[结论]基于实际车辆和线路数据开展了不同预测步长和不同权重系数对控制性能影响的仿真分析.通过仿真试验,对比验证了所提算法的有效性,该算法能够提高列车速度跟踪精度、减小车钩力冲动和降低列车运行能耗.
Research on Trajectory Tracking of Heavy-Haul Trains Based on Model Predictive Control
[Purposes]To enhance the safety,stability,and energy efficiency of overloaded trains and re-duce the coupling force between cars,this paper proposes a trajectory tracking method for overloaded trains based on model predictive control.[Methods]Firstly,a multi-mass dynamic model of overloaded trains considering the coupling force between vehicles is established.Then,the longitudinal impulse of the train,train energy consumption,and speed tracking errors are transformed into problems conforming to the model predictive control framework.Finally,a speed tracking controller based on model predictive control algorithm is designed,with the target speed curve as input and train control force as output.[Find-ings]This paper proposes a model predictive control algorithm aimed at improving the accuracy of track-ing the reference speed curve,reducing the impulse of the coupling force,and lowering train energy con-sumption.[Conclusions]Simulation analyses are conducted based on actual vehicle and track data to ex-amine the effects of different prediction step lengths and weight coefficients on control performance.Through comparative simulation experiments,the effectiveness of the proposed algorithm is verified,demonstrating its ability to enhance the accuracy of train speed tracking,reduce coupling force impulse,and decrease train energy consumption.

heavy-haul trainsmulti-particle modelautonomous train drivingmodel predictive control

张波、李荣喆、马睿杰

展开 >

国能朔黄铁路发展有限责任公司,河北 沧州 062350

国能运输技术研究院有限责任公司,北京 100000

重载列车 多质点模型 列车自动驾驶 模型预测控制

2024

河南科技
河南省科学技术信息研究院

河南科技

影响因子:0.615
ISSN:1003-5168
年,卷(期):2024.51(14)
  • 7