首页|基于朴素贝叶斯的智慧配电网运行状态估计研究

基于朴素贝叶斯的智慧配电网运行状态估计研究

扫码查看
[目的]配电网运行状态估计需要对各种参数进行监测和采集,涉及大量的实时数据.数据的准确性、完整性和实时性直接影响到状态估计的精度.然而,配电网设备的数量大、分布面广、设备种类多,造成数据采集的难度较大,导致智慧配电网运行状态估计效果下降,为此提出基于朴素贝叶斯的智慧配电网运行状态估计方法.[方法]建立智慧配电网的量测模型,利用该模型以及采集设备对智慧配电网的运行状态量测数据进行采集与处理,得到可靠且有效的数据.之后,将用处理好的量测数据通过朴素贝叶斯方法对未知变量的先验分布进行修正,得到后验分布,从而实现对配电网运行状态的精确估计.[结果]该研究方法能够提高状态估计正确率,最高达到了98.5%,估计结果能够准确反映配电网的实际运行状态.[结论]智慧配电网运行状态估计方法的应用有助于提高配电网的智能化水平,实现配电网的实时监测、优化运行以及故障预测和处理,从而保证智慧配电网的安全稳定运行.
Research on Smart Distribution Network Operation State Estimation Based on Naive Bayes
[Purposes]The state estimation of distribution networks requires monitoring and collecting various parameters,which involves a large amount of real-time data.The accuracy,completeness,and real-time performance of data directly affect the accuracy of state estimation.However,due to the large number and wide range of equipment in the distribution network,as well as the difficulty of data collec-tion,the effectiveness of intelligent distribution network operation state estimation has decreased.There-fore,a naive Bayesian based intelligent distribution network operation state estimation method is pro-posed.[Methods]This paper establishes a measurement model for the smart distribution network,uses this model and collection equipment to collect and process the operational status measurement data of the smart distribution network,and obtains reliable and effective data.Then,by processed measurement data and naive Bayesian methods,the prior distribution of unknown variables is corrected to obtain a pos-terior distribution,thereby achieving accurate estimation of the operating status of the distribution net-work.[Findings]The research method can improve the accuracy of state estimation up to 98.5%,and the estimation results can accurately reflect the actual operating state of the distribution network.[Conclu-sions]The application of intelligent distribution network operation state estimation methods helps to im-prove the intelligence level of the distribution network,achieve real-time monitoring,optimized opera-tion,and fault prediction and processing of the distribution network,thereby ensuring the safe and stable operation of the intelligent distribution network.

naive bayessmart distribution networkoperating statusstate estimation

韩保良、陈攀峰、陈星维

展开 >

国网湖州供电公司,浙江 湖州 313000

朴素贝叶斯 智慧配电网 运行状态 状态估计

2024

河南科技
河南省科学技术信息研究院

河南科技

影响因子:0.615
ISSN:1003-5168
年,卷(期):2024.51(19)