首页|基于深度学习的建筑物变化检测技术研究

基于深度学习的建筑物变化检测技术研究

扫码查看
[目的]针对建筑物动态监测的需求,综合分析深度学习技术在变化发现中的应用案例,提出了一种基于深度学习的建筑物快速变化监测技术路线.[方法]以多源、多时相遥感影像和地理国情监测等专题数据为数据源,进行建筑物变化样本标注,建立建筑物变化检测样本集.基于变化检测样本集,采用卷积神经网络构建和优化算法模型,进行建筑物变化信息提取.[结果]选择研究区,利用优化后的建筑物变化检测算法模型进行建筑物变化信息提取,准确率为79.07%,召回率为74.60%.[结论]基于深度学习的变化检测技术效果较为理想,能显著提升效率,可为自然资源调查监测、城市规划和体检等提供数据和技术支撑.
Research on Building Change Detection Technology Based on Deep Learning
[Purposes]In response to the demand for dynamic monitoring of buildings,a deep learning based rapid change monitoring technology route for buildings is proposed by comprehensively analyzing the application cases of deep learning technology in change discovery.[Methods]Based on multi-source and multi-temporal remote sensing images and thematic data such as geographical conditions monitor-ing,the building change samples are labeled and the building change detection sample set is established.[Findings]The study area is selected,and the building change detection algorithm model is optimize and use to extract building change information with an accuracy of 79.07%and a recall rate of 74.60%.[Con-clusions]The results indicate that the change detection technology based on deep learning has a rela-tively ideal effect and can significantly improve efficiency,providing data and technical support for natu-ral resource investigation and monitoring,urban planning,and physical examinations.

change detectiondeep learningbuildingremote sensing images

叶萍萍、仝昕

展开 >

甘肃省基础地理信息中心,甘肃 兰州 730000

变化检测 深度学习 建筑物 遥感影像

2024

河南科技
河南省科学技术信息研究院

河南科技

影响因子:0.615
ISSN:1003-5168
年,卷(期):2024.51(19)