首页|基于脑电技术的情感分析系统设计与应用

基于脑电技术的情感分析系统设计与应用

扫码查看
[目的]旨在设计和应用一种基于脑电技术的情感分析系统,以实现对用户情感状态的准确识别,该系统将成为情感分析领域的一种精准可靠的工具。[方法]该系统依赖于高级信号处理技术和机器学习算法,通过监测和解析脑电波与特定情感状态之间的关联,实现情感的实时监测和分类。其中,数据采集模块负责收集脑电信号,信号处理模块负责信号的清洗和特征提取,情感识别模块则负责分类算法判定用户的情感状态。[结果]该系统可以准确地识别出用户的情感状态,并实现实时监测和分类。各个功能模块运行稳定,整体性能达到了预期的效果。[结论]基于脑电技术的情感分析系统在实验中表现出了良好的效果和应用前景,其精准的情感识别能力为医疗健康、用户体验优化等领域提供了重要支持。未来,可进一步优化系统的性能,拓展其在更加广泛的领域中应用,如心理健康辅助诊断等方面。
Design and Application of Emotion Analysis System Based on EEG Technology
[Purposes]This study aims to design and apply an emotion analysis system based on Electroen-cephalography(EEG)technology to accurately identify user emotional states.The system provides a pre-cise and reliable tool for the field of emotional analysis.[Methods]The system relies on advanced signal processing techniques and machine learning algorithms to monitor and analyze the correlation between EEG signals and specific emotional states,achieving real-time monitoring and classification of emotions.Key components include a data acquisition module responsible for collecting EEG signals,a signal pro-cessing module for cleaning and feature extraction,and an emotion recognition module using classifica-tion algorithms to determine user emotional states.[Findings]The system can accurately identify user emotional states and achieve real-time monitoring and classification.Each functional module operates stably,and the overall performance meets expectations.[Conclusions]The emotion analysis system based on EEG technology shows promising results and applications in experiments.Its precise emotion recognition capability provides significant support for medical health,user experience optimization,and beyond.Future research can further optimize the system's performance and expand its applications in broader fields,such as psychological health assistance diagnosis.

EEG technologysentiment analysissignal processingmachine learning

荆婷、杨耿、谢敏婷、王荦荦

展开 >

广东茂名幼儿师范专科学校 广东 茂名 525000

珠海城市职业技术学院,广东 珠海 519000

脑电技术 情感分析 信号处理 机器学习

2024

河南科技
河南省科学技术信息研究院

河南科技

影响因子:0.615
ISSN:1003-5168
年,卷(期):2024.51(20)