首页|基于知识图谱的强化学习推荐算法研究

基于知识图谱的强化学习推荐算法研究

扫码查看
[目的]针对基于知识图谱的强化学习推荐算法只考虑推荐结果的可解释性,没有考虑推荐结果的多样性问题,提出一种新的基于知识图谱的强化学习推荐算法。在解决推荐结果可解释性问题的基础上,提高推荐结果的多样性和准确性。[方法]通过提出一种针对推荐结果多样性的评价指标ETD,并在算法的路径推理模块中引入Random_Beam_Search搜索算法,提高推荐结果的多样性。同时,强化学习模块引入注意力机制,提高推荐结果的准确性。[结果]与具有可解释性的PGPR推荐算法相比,该推荐算法在Beauty数据集上推荐结果多样性提高了28。4%,准确性提高了0。056百分点;在Clothing数据集上推荐结果准确性提高了0。035百分点。[结论]该推荐算法不仅解决了推荐系统的可解释性问题,还提高了推荐结果的多样性与准确性。
Research on Reinforcement Learning Recommendation Algorithm Based on Knowledge Graph
[Purposes]In response to the problem that knowledge graph based reinforcement learning rec-ommendation algorithms only consider the interpretability of recommendation results without considering the diversity of recommendation results,this paper proposes a new knowledge graph based reinforcement learning recommendation algorithm to improve the diversity and accuracy of recommendation results while solving the interpretability problem of recommendation results.[Methods]This article proposes an evaluation metric ETD for the diversity of recommendation results,and introduces the Ran-dome_Beam_Search search algorithm in the path inference module of the algorithm to improve the diver-sity of recommendation results.At the same time,an attention mechanism is introduced in the reinforce-ment learning module to improve the accuracy of recommendation results.[Findings]Compared with the interpretable PGPR recommendation algorithm,the algorithm proposed in this article improved the diver-sity of recommendation results by 28.4%and accuracy by 0.056 percentage points on the Beauty dataset;the accuracy of recommendation results on the Clothing dataset improved by 0.035 percentage points.[Conclusions]The algorithm proposed in this article not only solves the interpretability problem of rec-ommendation systems,but also improves the diversity and accuracy of recommendation results.

recommendation algorithmsknowledge graphsdiversity

柳家栋

展开 >

河南财经政法大学计算机与信息工程学院,河南 郑州 450046

推荐算法 知识图谱 多样性

2024

河南科技
河南省科学技术信息研究院

河南科技

影响因子:0.615
ISSN:1003-5168
年,卷(期):2024.51(20)