首页|固废建材重金属溶出趋势预测分析

固废建材重金属溶出趋势预测分析

扫码查看
[目的]针对固废建材中重金属的溶出量的预测控制效果不佳问题,提出了一种基于长短期记忆(Long Short-Term Memory,LSTM)神经网络的重金属溶出预测模型.[方法]首先采用该模型对颗粒状及块状免烧砖中Cr、Zn和Pb等重金属元素的溶出量进行预测和分析.其次为进一步提高模型的适用性和训练收敛速度,对Adam算法的参数进行了优化.最后采用改进的预测模型对块状免烧砖中的Cr、Zn和Pb的溶出量进行模拟预测验证.[结果]在对块状免烧砖的重金属溶出预测中,该模型对Cr、Zn和Pb预测的决策系数R2均大于0.97,预测结果较为准确.[结论]该模型对固废建材中的重金属释放控制具有指导意义.
Prediction and Analysis of Heavy Metal Leaching Trend in Solid Waste Building Materials
[Purposes]Heavy metal leaching prediction model based on Long Short Term Memory(LSTM)neural network was proposed to address the poor predictive control effect of heavy metal leaching in solid waste building materials.[Methods]The model was used to predict and analyze the leaching amounts of heavy metal elements such as Cr,Zn,and Pb in granular and block shaped unburned bricks.To further improve the applicability and training convergence speed of the model,the parameters of the Adam algo-rithm were optimized.Adopting an improved prediction model to simulate and verify the leaching amounts of Cr,Zn,and Pb in block shaped unburned bricks.[Findings]The results indicate that the pre-diction of heavy metal leaching from block shaped unburned bricks,the decision coefficients R2 of the model for predicting Cr,Zn,and Pb are all greater than 0.97,which indicates a relatively accurate predic-tion result.[Conclusions]This study has significance for the control of heavy metal release in solid waste building materials.

solid wasteheavy metalleachingprediction

张旭芳

展开 >

华北水利水电大学,河南 郑州 450046

固体废物 重金属 溶出 预测

2024

河南科技
河南省科学技术信息研究院

河南科技

影响因子:0.615
ISSN:1003-5168
年,卷(期):2024.51(22)