首页|基于大数据技术的光伏发电功率短期预测研究

基于大数据技术的光伏发电功率短期预测研究

扫码查看
[目的]通过光伏发电功率短期预测技术可实时掌握光伏发电的输出功率,有助于电网调度部门统筹安排常规电源和光伏发电,合理调整调度计划,能有效减轻光伏发电系统接入对电网产生的不利影响,保证电网安全稳定运行.[方法]提取光伏发电功率的影响因子,分析太阳辐照度、温度、气象因子对光伏发电功率的影响,避免短期预测出现失误.基于大数据技术构建光伏发电功率短期预测模型,利用长短期记忆神经网络来提取光伏发电功率短期特征,确保功率预测的准确性.生成光伏发电功率短期非平稳预测序列,并捕捉光伏发电功率的时间序列特征,及时更新校正发电功率预测结果,从而得到精准的预测结果.[结果]设计方法的功率预测波动与实际波动一致,预测值与实际值之间偏差较小,能适应后续功率调度、运行需求.[结论]研究成果为制定合理的调度计划奠定重要基础,减少资源浪费,对提高电站经济效益具有重要的促进作用.
Research on Short-Term Prediction of Photovoltaic Power Generation Capacity Based on Big Data Technology
[Purposes]Through the short-term prediction technology of photovoltaic power generation,the output power of photovoltaic power generation can be grasped in real time,which helps the power grid dispatch department to coordinate the coordination between conventional power sources and photovoltaic power generation,adjust the dispatch plan reasonably,effectively reduce the adverse impact of photovol-taic power generation system access on the power grid,and ensure the safe and stable operation of the power grid.[Methods]By extracting the influencing factors of photovoltaic power generation,this paper analyzes the impact of solar irradiance,temperature,and meteorological factors on photovoltaic power generation to avoid the problem of short-term prediction errors.This paper builds a short-term predic-tion model for photovoltaic power generation based on big data technology,and utilizes long short-term memory neural networks to extract short-term features of photovoltaic power generation to ensure the ac-curacy of power prediction.And then,this paper generates a short-term non-stationary prediction se-quence for photovoltaic power generation,captures the time series characteristics of photovoltaic power generation,and updates sand correct the prediction results in a timely manner to obtain accurate predic-tion results.[Findings]The power prediction fluctuation of the design method is consistent with the ac-tual fluctuation,and the deviation between the predicted value and the actual value is small,which can adapt to the subsequent power scheduling and operation requirements.[Conclusions]This study can lay an important foundation for formulating reasonable scheduling plans,reduce resource waste,and play an important role in improving the economic benefits of power plants.

big data technologyphotovoltaic power stationpower generation capacityshort-termpre-diction methods

付立国

展开 >

隆基乐叶光伏科技有限公司,陕西 西安 710018

大数据技术 光伏电站 发电功率 短期 预测方法

2024

河南科技
河南省科学技术信息研究院

河南科技

影响因子:0.615
ISSN:1003-5168
年,卷(期):2024.51(24)