首页|基于时空贝叶斯模型的行程时间可靠性预测

基于时空贝叶斯模型的行程时间可靠性预测

扫码查看
为了全面、准确地分析路段行程时间的时空分布,将路段的时间序列和空间关联关系纳入两个邻近路段的行程时间可靠性预测过程.在时间维度上,通过广泛使用的卡尔曼滤波预测行程时间;在空间维度上,根据离散马尔科夫链构建上下游路段行程时间的关联模型.进而构建了时空贝叶斯模型(ST-BM),将时间维度和空间维度的行程时间分布进行融合,从而预测路段行程时间可靠性.实例分析结果表明,相比于先验分布数据,文中模型将两个实测邻近路段的可靠性预测误差分别降低了45.7%和29.2%,验证了ST-BM模型的有效性.
Reliability Prediction of Travel Time Based on Spatio-Temporal Bayesian Model
In order to fully and accurately analyze the spatio-temporal distribution of link travel time,this paper incorporates the time sequence and the spatial relationship between two links into two adjacent links for travel time reliability prediction.From the temporal dimension,the widely-used Kalman filtering is adopted to predict the travel time;while from the spatial dimension,the correlation model describing the travel time between downstream and upstream links is built based on the discrete Markov chain model.Then,a spatio-temporal Bayesian model (ST-BM) is constructed to fuse the temporal and spatial travel time distributions for predicting the travel time reliability of road links.Case study results show that,as compared with the prior distributions,the proposed model decreases the reliability prediction error by 45.7% and 29.2% respectively for the two measured adjacent links,which verifies the effectiveness of the ST-BM model.

expresswaytravel time reliabilityspatio-temporal Bayesian modelspatio-temporal correlationMarkov chain

杨庆芳、韦学武、林赐云、李志林、刘翔宇

展开 >

吉林大学汽车仿真与控制国家重点实验室,吉林长春130022

吉林大学交通学院,吉林长春130022

吉林大学吉林省道路交通重点实验室,吉林长春30022

高速公路 行程时间可靠性 时空贝叶斯模型 时空关联 Markov链

国家科技支撑计划项目山东省省管企业科技创新项目

2014BAG03B0320122150251-5

2016

华南理工大学学报(自然科学版)
华南理工大学

华南理工大学学报(自然科学版)

CSTPCDCSCD北大核心EI
影响因子:0.678
ISSN:1000-565X
年,卷(期):2016.44(4)
  • 5
  • 7