首页|小样本下基于原型域增强的Meta-DAE故障诊断

小样本下基于原型域增强的Meta-DAE故障诊断

Meta-DAE Fault Diagnosis Based on Prototype Domain Enhancement in Few-Shot

扫码查看
滚动轴承作为一种精密的机械元件,已广泛运用于现代工业机械设备中.在轴承运行时,采用合理的方法诊断轴承的故障具有重大的意义.但在实际复杂多变环境下,采集振动信号不仅面临样本量少的问题,还受到噪声干扰、工况变换等因素的影响,导致故障诊断的准确率低.因此,针对噪声干扰和变工况下的小样本滚动轴承故障诊断问题,该文提出了一种基于原型域增强的元学习去噪模型(Meta-DAE).首先,构造基于时频图的小样本故障样本集,引入深度卷积生成对抗网络并对数据进行预处理,生成相似分布的伪样本集;然后,将故障样本集输入Meta-DAE模型进行自适应特征提取,Meta-DAE模型采用原型域增强策略,使同类别原型点在嵌入空间中凝聚更紧密;同时,构建了具有降噪性能的编码器,设计了基于原型域增强和去噪的目标函数,通过在小样本下进行模型微调,以提高小样本下模型的噪声鲁棒性和分类准确率.噪声及变工况下小样本故障诊断实验结果表明,相比于其他模型,所提模型在-8 dB强噪声干扰下,仅用10个样本微调模型,分类准确率提高了35.78~57.25个百分点,具有较强的噪声鲁棒性.
Rolling bearings,as a type of precision mechanical component,are widely used in modern industrial machinery and equipment.It is of great significance to diagnose bearing faults using reasonable methods during bea-ring operation.However,in the actual complex and ever-changing environment,the collection of vibration signals often faces challenges such as limited sample sizes,noise interference,and operating condition variations,resulting in low fault diagnosis accuracy.To address the problem of small-sample rolling bearing fault diagnosis under noise interference and variable operating conditions,this paper proposed a meta-learning denoising model based on proto-type domain enhancement(Meta-DAE).Firstly,a small-sample fault dataset based on time-frequency diagrams was constructed,and a deep convolutional generative adversarial network was introduced for data preprocessing to gene-rate a pseudo-sample set with a similar distribution.Then,the fault sample set was input into Meta-DAE for adap-tive feature extraction.Meta-DAE adopts a prototype domain enhancement strategy to make prototype points of the same category more closely clustered in the embedding space.At the same time,an encoder with noise reduction performance was constructed,and a target function based on prototype domain enhancement and denoising was designed.By fine-tuning the model under small-sample conditions,the noise robustness and classification accuracy of the model were improved.Experimental results of small-sample fault diagnosis under noise interference and vari-able operating conditions show that,compared to other models,the proposed model demonstrates strong noise robustness.Under-8 dB strong noise interference,the model achieves a classification accuracy improvement of 35.78%to 57.25%using only 10 samples for fine-tuning.

few-shotfault diagnosismeta learningprototype domain enhancementdenoising autoencoder

马萍、梁城、王聪、李新凯、张宏立

展开 >

新疆大学 电气工程学院,新疆 乌鲁木齐 830017

小样本 故障诊断 元学习 原型域增强 去噪自编码器

2025

华南理工大学学报(自然科学版)
华南理工大学

华南理工大学学报(自然科学版)

北大核心
影响因子:0.678
ISSN:1000-565X
年,卷(期):2025.53(1)