[目的]为了实现草坪杂草管理的精准化施药,针对自然环境中杂草与草坪颜色相近导致杂草难以分割的问题,提出一种改进模糊C均值(Fuzzy C-means,FCM)聚类的分割算法。[方法]利用超绿算子提取感兴趣区域,融合HSV空间的多通道信息进行图像预处理,扩大杂草与草坪的特征差异。使用区域面积约束滤波范围,去除预处理图像中的草坪背景噪声,降低中值滤波造成的目标区域灰度级损失。提出一种各向灰度分布差异(Difference of gray distribution,DGD)检测算子,在聚类过程中引入像素周围不同方向的灰度分布差异特征实现草坪杂草分割。[结果]与传统FCM、FCM-S2、FCMNLS以及RSFCM算法相比,本文算法对大多数噪声区域抑制效果较好,可以实现较为理想的杂草分割效果。本文算法能有效分割草坪杂草,平均分割准确率达到91。45%,比FCM、FCM-S2、FCMNLS和RSFCM算法分别提高16。35%、4。12%、6。80%和8。06%。[结论]本文算法可有效地分割自然环境中的草坪杂草,为草坪杂草精准化施药提供了条件,具有实际应用价值。
Lawn weed recognition based on improved fuzzy C-means clustering algorithm