首页|基于BPNN-PID控制策略的果蔬保鲜环境参数调控优化

基于BPNN-PID控制策略的果蔬保鲜环境参数调控优化

扫码查看
[目的]开发新的控制策略,用于解决传统控制方法果蔬保鲜环境参数因时变性、非线性、滞后性强和惯性大等特点导致的控制精度低、鲁棒性弱等问题。[方法]将传统比例-积分-微分(Proportional-integral-derivative,PID)和BP神经网络(Back-propagation neural network,BPNN)算法相结合,开发一种基于BPNN-PID的控制策略,通过自主搭建的果蔬保鲜环境调控试验平台和自主设计的控制系统,研究不同控制策略对保鲜环境参数调控效果的影响。[结果]基于BPNN-PID控制策略的果蔬保鲜环境控制系统,环境温度超调量为1。7℃、稳定时间为80 min、稳态误差为±0。2 ℃,环境相对湿度超调量为2。8%、稳定时间为55 min,相对湿度稳定维持在80%~90%范围内。与传统PID控制策略相比,BPNN-PID控制策略环境温度超调量减小了 2。1 ℃、稳态误差减小了 0。3 ℃、稳定时间缩短了 25 min,环境相对湿度超调量减小了 2。2%、稳定时间缩短了 25 min,环境参数波动幅度均有所降低。[结论]本文开发的果蔬保鲜环境控制系统呈现出良好的动态调整能力,具有较强的鲁棒性,控制性能明显提升,实现了保鲜环境参数的精准控制,满足果蔬保鲜贮藏要求。研究结果为果蔬保鲜环境参数调控提供了参考。
Adjustment and improvement of environmental parameters for fruit and vegetable fresh-keeping based on BPNN-PID control strategy
[Objective]The environmental parameters of fruit and vegetable preservation are characterized by time-varying,non-linear,strong hysteresis and large inertia,which leads to the problems of low control accuracy and weak robustness of traditional control methods.The goal was to develop a new control strategy to address these problems.[Method]We combined conventional proportional-integral-derivative(PID)and back-propagation neural network(BPNN)algorithms to develop a control strategy based on BPNN-PID.We studied the effect of using different control strategies on the regulation of freshness environment parameters through an independently built test platform for environmental regulation in fruit and vegetable preservation and an independently designed control system.[Result]The experimental results showed that the temperature overshoot of the environment control system based on BPNN-PID control strategy was 1.7 ℃,the stable time was 80 min,and the steady-state error was 0.2 ℃.The overshoot of environmental relative humidity was 2.8%,the stable time was 55 min,and it was stable in the range of 80%-90%.Compared with conventional PID control strategy,the ambient temperature overshoot of BPNN-PID control strategy was reduced by 2.1 ℃,the steady-state error was reduced by 0.3 ℃,and the steady-state time was shortened by 25 min.The environmental relative humidity overshoot was reduced by 2.2%,the stabilization time was shortened by 25 min,and the fluctuation ranges of environmental parameters were reduced.[Conclusion]The system shows good dynamic adjustment ability,strong robustness and obvious improvement in control performance,which enables accurate control of environmental parameters of fruit and vegetable preservation and meets the requirements of fruit and vegetable preservation and storage.The research results can provide references for the regulation of environmental parameters of fruit and vegetable preservation.

PIDBPNNControl systemFruit and vegetable fresh-keepingEnvironmental parameterOvershoot

吕恩利、蔡晋炜、曾志雄、蔡威、谢伯铭、王广海、郭嘉明

展开 >

华南农业大学工程学院,广东广州 510642

岭南现代农业科学与技术广东省实验室茂名分中心,广东茂名 525000

广东机电职业技术学院,广东广州 510550

PID BPNN 控制系统 果蔬保鲜 环境参数 超调量

英德市提升市县茶叶科技能力促进产业发展项目广东省农业科技创新及推广项目广东省农产品保鲜物流共性关键技术研发创新团队项目广东省农业科研项目和农业技术推广项目茂名市实验室自主科研项目

403-2018-XMZC-0002-902022KJ1012022KJ1454400002100000000868602021ZZ003

2024

华南农业大学学报
华南农业大学

华南农业大学学报

CSTPCD北大核心
影响因子:0.837
ISSN:1001-411X
年,卷(期):2024.45(1)
  • 26