首页|基于EEMD-WPT的温室环境数据优化处理研究

基于EEMD-WPT的温室环境数据优化处理研究

扫码查看
[目的]解决温室系统中的数据采集传感器容易受到多种环境因素的干扰,从而导致数据中存在噪声的问题.[方法]提出一种集合经验模态分解(Ensemble empirical mode decomposition,EEMD)与小波包自适应阈值(Wavelet packet adaptive threshold,WPT)算法联合的数据降噪处理方法,并采用卡尔曼滤波与自适应加权平均算法对降噪后的数据进行融合.[结果]将EEMD-WPT算法应用于含噪温、湿度数据的降噪处理,相较于降噪前的数据,信噪比提升了 73.08%.该算法相较于传统WPT算法具有更好的降噪效果,处理后的数据信噪比提升了 40.31%,均方根误差降低了 84.75%.[结论]该算法能解决数据跳动、冗余和丢失等问题,并为温室控制系统提供了有效的参数,具有较大的实际应用价值.
Research on the optimization processing of greenhouse environmental data based on EEMD-WPT
[Objective]To address the problem that the data acquisition sensors in greenhouse system are easily disturbed by various environmental factors,leading to the presence of noise in the data.[Method]This study proposed a data noise reduction processing method combining ensemble empirical mode decomposition(EEMD)and wavelet packet adaptive threshold(WPT)algorithm,and the Kalman filter and adaptive weighted average algorithm were used to fuse the noise-reduced data.[Result]After applying the EEMD-WPT algorithm to the noise reduction processing of the noise-containing temperature and humidity data,the signal-to-noise ratio was improved by 73.08%compared with the data before noise reduction.The EEMD-WPT algorithm had better noise reduction effect compared with the traditional WPT algorithm,and the signal-to-noise ratio of the processed data was improved by 40.31%and the root mean square error reduced by 84.75%.[Conclusion]The algorithm can solve the problems of data skipping,redundancy and loss,and provides effective parameters for the greenhouse control system,making it highly practical and valuable for application.

EEMDWavelet packetAdaptive thresholdNoise reductionGreenhouseData fusion

吴伟斌、杨柳、吴维浩、吴贤楠、沈梓颖、张方任、罗远强

展开 >

华南农业大学工程学院,广东广州 510642

南方农业机械与装备关键技术教育部重点研究室/国家柑橘产业体系机械化研究室/广东省山地果园机械创新工程技术研究中心,广东广州 510642

EEMD 小波包 自适应阈值 降噪 温室 数据融合

广东省现代农业产业技术体系创新团队建设项目国家自然科学基金青年科学基金

2023KJ12052005188

2024

华南农业大学学报
华南农业大学

华南农业大学学报

CSTPCD北大核心
影响因子:0.837
ISSN:1001-411X
年,卷(期):2024.45(3)
  • 21