首页|基于风云四号卫星数据的南海海雾遥感监测

基于风云四号卫星数据的南海海雾遥感监测

扫码查看
基于中国新一代静止气象卫星FY-4A所携带的辐射成像仪AGRI(Advanced Geosynchronous Radiation Imager)观测数据和地面能见度观测资料,通过不同组合的可见光通道、近红外通道、中远红外通道的数据,开展南海区域海雾遥感监测研究.针对海雾在遥感影像中与下垫面和云的不同特征,通过使用最小二乘法动态拟合选取最优度的方法实现海雾与下垫面的分离,使用云顶高度阈值的方法实现海雾与中高云的分离,使用纹理特征识别和海雾检测指数的方法实现海雾和低云在 日间的分离,使用薄低云检测指数的方法实现海雾和低云在夜间的分离,并将海雾判识结果与2018年广东沿海地基观测资料进行对比.结果表明:(1)使用最小二乘法动态拟合选取最优度的方法,对海雾和下垫面的区分有着良好的效果,使用纹理特征识别和海雾检测指数的方法对海雾和低云的区分也有一定的改进作用.(2)该算法对3月份发生的海雾的识别准确率最高,为85.45%,虚警率最低,为20.94%;对5月份发生的海雾识别准确率最低,为58.70%;对1月份发生的海雾虚警率最高,为30.95%.该海雾监测算法平均准确率为76.37%,虚警率约为26.08%.
Remote Sensing Monitoring of Sea Fog in the South China Sea Based on FY-4 Satellite Data
Based on the observation data of the advanced geosynchronous radiation imager(AGRI)carried by the new generation geostationary meteorological satellite FY-4A and the visibility data of the ground automatic weather station,we carried out the remote sensing detection of sea fog in the South Chi-na Sea through different combinations of visible channel,near-infrared channel and mid-far infrared chan-nel data.In this article,in view of the different characteristics of sea fog from underlying surface and cloud in remote sensing image,the least square method is used to dynamically fit and select the optimal degree to realize the separation of sea fog from underlying surface.The method of cloud top height thresh-old is used to separate sea fog from mid-and high-level clouds.The method of texture feature recognition and sea fog detection index is used to separate sea fog and low-level cloud in daytime.The method of thin low-level cloud detection index is used to separate sea fog and low-level cloud during the night.What's more,the sea fog identification results are compared with the ground observation data along the Guang-dong coast in 2018.The results show that:(1)the method of using the least square dynamic fitting to se-lect the optimal degree has a good effect on the distinction between sea fog and underlying surface,and the method of using texture feature recognition and sea fog detection index has a certain improvement on the distinction between sea fog and low-level cloud.(2)The sea fog monitoring algorithm has the highest recognition accuracy of 85.45%for the sea fog in March with the lowest false alarm rate of 20.94%,and the lowest recognition accuracy of 58.70%for the sea fog in May,but the highest false alarm rate of 30.95%for the sea fog in January.The average accuracy of the sea fog monitoring algorithm was 76.37%and the average false alarm rate was 26.08%.

FY-4A satellitesea fogthe South China Searemote sensing monitoring

张毅、靳奎峰、刘子菁、刘厚智、杨颖璨、何沐全

展开 >

广州市突发事件预警信息发布中心,广州 514300

广东省气象服务中心,广州 510630

广州气象卫星地面站,广州 510630

风云四号卫星 海雾 南海 遥感监测

广东省气象局科学技术研究项目广州市科技计划

GRMC2020Z052023B04J0704

2024

气象与环境科学
河南省气象局

气象与环境科学

CSTPCD
影响因子:1.28
ISSN:1673-7148
年,卷(期):2024.47(2)
  • 33