首页|基于改进作物缺水指数的河南省冬小麦干旱监测

基于改进作物缺水指数的河南省冬小麦干旱监测

扫码查看
基于农业干旱遥感监测指标的干旱监测是简单且有效的手段,其中作物缺水指数 CWSI 通过反映植被供水状况在农业干旱监测中取得了良好的应用效果,但 CWSI在反映植被水分实际状况时存在滞后性。在 CWSI的基础上,通过增加 LAI变化项表征作物形态受干旱影响的变化,构建一种改进的作物缺水指数 CWSIIMP,以反映作物水分实际状况和作物受干旱影响的程度。计算结果表明,河南省冬小麦田的 CWSIIMP 普遍低于 CWSI,反映农业干旱程度较轻,与实际情况更为吻合。CWSIIMP 与 20 cm 土壤相对湿度的相关系数 R2 为 0。856,CWSI 与 20 cm土壤相对湿度的相关系数 R2 为 0。803,CWSIIMP 与 20 cm土壤相对湿度的相关性显著优于 CWSI。通过经验模型,将以 20 cm土壤相对湿度为指标的干旱等级划分标准分别转换为以 CWSI 和 CWSIIMP 为指标的干旱等级划分标准。典型区域分析表明,利用 CWSIIMP 指标监测农业干旱等级较 CWSI指标具有更高的可靠性和合理性,可为大面积农业干旱监测与评估、农田灌溉管理等提供科学依据。
Drought Monitoring of Winter Wheat in Henan Province Based on Improved Crop Water Scarcity Index
Drought monitoring based on the agricultural drought remote sensing monitoring index is a relatively simple and effective method.The crop water stress index(CWSI)has been widely applied in agricultural drought monitoring via reflecting vegetation water supply status,but it shows a lag in promptly reflecting actual vegetation water conditions.To address this limitation,an improved crop water stress in-dex,CWSIIMP,is constructed on the basis of CWSI by adding LAI variation term to characterize crop morphology changes due to drought,so as to reflect the actual crop water status and the degree of drought-affected crops.The results show that CWSIIMP values in winter wheat fields in Henan Province are gener-ally lower than CWSI values,indicating milder agricultural drought conditions that align more closely with observation.The coefficient of determination(R2)between CWSIIMP and 20 cm relative soil moisture is 0.856,highlighting a stronger correlation for CWSIIMP compared to the R2 value of 0.803 between CWSI and 20 cm relative soil moisture.Empirical models are used to transform drought grade classifications based on 20 cm relative soil moisture into classifications based on both CWSI and CWSIIMP.Regional analysis demonstrates that using the CWSIIMP index for monitoring agricultural drought grades in winter wheat areas of Henan Province is more reliable and scientific than using CWSI alone.This approach can provide a robust basis for large-scale farmland drought monitoring,evaluation and irrigation management.

CWSILAISEBSremote sensing

李颖、陈怀亮、梁辰、贺添、李彤霄

展开 >

中国气象局·河南省农业气象保障与应用技术重点开放实验室,郑州 450003

河南省气象科学研究所,郑州 450003

河南省郑州农业气象野外科学观测研究站,郑州 450003

中国气象局郑州农业气象野外科学试验基地,郑州 450003

辽宁省气象局,沈阳 110016

上海市青浦区水务局,上海 201715

郑州大学,郑州 450001

展开 >

CWSI LAI SEBS 遥感

中国气象局·河南省农业气象保障与应用技术重点开放实验室开放基金项目国家自然科学基金项目

AMF20240841805090

2024

气象与环境科学
河南省气象局

气象与环境科学

CSTPCD
影响因子:1.28
ISSN:1673-7148
年,卷(期):2024.47(5)