首页|信息圈层化及其形成机制:基于ERGM的分析

信息圈层化及其形成机制:基于ERGM的分析

扫码查看
以复杂网络为视角,将信息圈层化操作化为用户信息共同关注网络,通过日志法收集用户信息接触数据,采用指数随机图模型(ERGM)分析圈层化的形成机制.研究发现,用户信息共同关注网络密度较低,呈现圈层化趋势.用户属性(包括人口特征、媒介使用偏好)、既有社交关系和信息关注网络的自组织结构影响信息圈层化,其中网络自组织结构的影响远远大于其他要素,节点的点度中心性、聚集系数正向影响信息圈层化,但中介中心性负向影响信息圈层化.用户社交关系数量、社交关系强度的影响因信息关注网络中的自组织结构而弱化,进而并不影响信息圈层化,线上社交媒体使用不会促进信息圈层化.此外,算法推荐平台使用偏好、算法政治信息偏好不会导致信息圈层化.
Information Stratification and Its Formation Mechanism:An Analysis Based on ERGM
From the perspective of complex networks,the operation of information stratification is transformed into a us-er information co-attention network.User information exposure data is collected through log analysis,and the exponential random graph model(ERGM)is used to analyze the formation mechanism of stratification.The study reveals that the densi-ty of user information co-attention network is relatively low,showing a trend towards stratification.User attributes(inclu-ding demographic characteristics and media usage preferences),existing social relationships,and self-organizing structures in the information co-attention network all influence information layering.Among them,the impact of self-organizing structures in the network far outweighs other factors.Node degree centrality and clustering coefficient positively affect information laye-ring,while intermediary centrality negatively affects it.The influence of user social relationship quantity and intensity on in-formation co-attention weakens due to self-organizing structures in the network,thus not affecting information stratification.Online social media usage does not promote information stratification either.Additionally,algorithmic recommendation plat-form preferences and algorithmic political bias do not lead to information stratification.

information stratificationinformation co-attention networkself-organized networkERGM

晏齐宏

展开 >

北京交通大学语言与传播学院(北京100044)

信息圈层化 信息共同关注网络 网络自组织 指数随机图模型

国家社会科学基金青年项目

21CXW007

2024

湖南师范大学社会科学学报
湖南师范大学

湖南师范大学社会科学学报

CSTPCDCSSCICHSSCD北大核心
影响因子:1.06
ISSN:1000-2529
年,卷(期):2024.53(1)
  • 47