首页|四川省县域数字乡村发展水平的地域特征与影响因素

四川省县域数字乡村发展水平的地域特征与影响因素

扫码查看
以北京大学新农村发展研究院发布的2020年县域数字乡村指数作为测度指标,采用空间自相关分析、半变异函数、地理加权回归、地理探测器等方法,研究四川省172个县域数字乡村发展水平的空间分异特征及影响因素.结果表明:(1)四川省县域数字乡村发展水平整体偏低,空间分异格局明显,呈现出以成都平原为核心高值区、自东向西递减的趋势.(2)数字乡村发展水平的空间关联性较强,显著高-高区主要分布在成都平原及其周围,如德阳、眉山的县域;显著低-低区主要在川西北及攀西地区分布,如阿坝、甘孜、凉山的县域.(3)数字基础设施指数和治理数字化指数的地域分异受空间相关性影响的比重大,经济数字化指数和生活数字化指数的地域分异主要受随机成分影响.(4)从回归系数平均数的绝对值看,影响四川省县域数字乡村发展水平的因素由大到小为农村金融、收入水平、互联网发展水平、人口受教育水平、政府支持和交通条件.并且这些因素不是独立、直接作用于数字乡村,而是各因素两两交互作用.
Geographical Characteristics and Influencing Factors of Digital Rural Development Level at County Scale in Sichuan Province
Taking the 2020 Digital Rural County Index provided by Institute for New Rural Development as a measurement indicator,spatial autocorrelation analysis,spatial variation function,geographic weighted regression,and other methods were used to study the spatial differentiation characteristics and influencing factors of the devel-opment level of digital rural areas in 172 counties in Sichuan province.The results are as follows.(1)The overall level of digital rural development in counties of Sichuan province is low,and the spatial differentiation pattern is ob-vious,showing a decreasing trend from east to west with Chengdu Plain as the core high value area.(2)The spatial correlation of digital rural development level is strong,and the significant high-high areas are mainly distributed in and around Chengdu Plain,such as Deyang and Meishan counties.Significant low-low areas are mainly distributed in the northwest of Sichuan and Panxi regions,such as counties in Aba,Ganzi,and Liangshan.(3)The regional differentiation of digital infrastructure index and governance digital index is greatly influenced by spatial correlation,while the regional differentiation of economic digital index and life digital index is mainly influenced by random components.(4)From the absolute value of the average regression coefficient,the factors that affect the develop-ment level of county-level digital rural ranked from high to low are rural finance,income level,internet develop-ment level,population education level,government support,transportation conditions.And these factors are not in-dependent and directly acting on digital rural,but rather the result of the enhanced interaction between various fac-tors in pairs.

digital rural development levelspatial differentiationinfluencing factorsgeographically weigh-ted regression modelSichuan province

杨仪娟、彭鹏、何珊、周国华

展开 >

湖南师范大学地理科学学院,中国长沙 410081

湖南师范大学地理空间大数据挖掘与应用湖南省重点实验室,中国长沙 410081

数字乡村发展水平 空间分异 影响因素 地理加权回归模型 四川省

国家自然科学基金资助项目

42371216

2024

湖南师范大学自然科学学报
湖南师范大学

湖南师范大学自然科学学报

CSTPCD北大核心
影响因子:0.62
ISSN:1000-2537
年,卷(期):2024.47(3)
  • 28