首页|基于信息量和机器学习的滑坡灾害易发性分析——以湖南省中西部地区为例

基于信息量和机器学习的滑坡灾害易发性分析——以湖南省中西部地区为例

扫码查看
以湖南省中西部地区为研究区,选取地形地貌、地质条件、环境条件和人工活动 4 个方面 15 个因子构成滑坡易发性评价体系.首先,以 2015-2022 年发生的 1 017 个历史滑坡灾害数据为样本数据,采用信息量模型统计和分析影响该区域的滑坡因子重要度,结果表明该区域内地形湿度指数、土地利用类型、距道路距离、距河流距离和植被覆盖指数是影响滑坡发生的因子.然后,结合因子相关性分析,筛选其中 14 个因子纳入滑坡易发性分区分析,基于 5 种机器学习方法进行滑坡易发性建模和对比,结果表明随机森林方法在该区域针对相关的因子体系表现出的精度相对较高.最后,采用随机森林方法,按照低易发、较低易发、中易发、较高易发和高易发5 个等级对研究区进行易发性分区制图,并与历史滑坡记录进行比对,结果表明易发性等级划定结果与滑坡密度基本吻合.该研究结果可以为湖南中西部地区滑坡灾害预测预报提供技术参考.
Analysis of Landslide Disaster Susceptibility Based on Information Quantity and Machine Learning:Take the Central and Western Regions of Hunan Province as an Example
This study focuses on the central and western regions of Hunan province,with 15 factors selected from four aspects:topography,geological conditions,environmental conditions,and anthropogenic activities to con-stitute a landslide susceptibility evaluation system.First,using 1 017 historical landslide disaster data from 2015 to 2022 as sample data,the information value model was employed to statistically analyze the importance of landslide factors in the regions.The results indicate that the topographic wetness index,land use type,distance from roads,distance from rivers,and vegetation coverage are significant influencing factors for landslide occurrence.Additional-ly,combining with the factor correlation analysis,14 factors were selected for landslide susceptibility zoning analy-sis.Five machine learning methods were applied to model and compare landslide susceptibility,revealing that the random forest method exhibits relatively high accuracy for the relevant factor system in these regions.Finally,the study employed the random forest method to create a susceptibility zoning map for the studied areas,classifying it into five levels:low,low-to-moderate,moderate,moderate-to-high,and high susceptibility.In comparison with the historical landslide records,the zoning results are generally consistent with the landslide densities.The findings pro-vide technical references for landslide disaster prediction and prevention in the central and western regions of Hunan province.

information content modelmachine learninglandslide susceptibility analysiscentral and west-ern regions of Hunan province

段中满、罗伟奇、陈雅娜、李姣、黄炜敏、雷耀波

展开 >

湖南省自然资源事务中心,中国 长沙 410118

信息量模型 机器学习 滑坡易发性分析 湖南中西部

&&

湘财建二指[2019]19号

2024

湖南师范大学自然科学学报
湖南师范大学

湖南师范大学自然科学学报

CSTPCD北大核心
影响因子:0.62
ISSN:1000-2537
年,卷(期):2024.47(5)