首页|G-利普希茨跟踪性、G-等度连续和G-非游荡点集的研究

G-利普希茨跟踪性、G-等度连续和G-非游荡点集的研究

扫码查看
利用度量G-空间中映射f与轨道空间中诱导映射(f)之间的性质,研究了映射f的G-利普希茨跟踪性、G-等度连续、G-非游荡点与诱导映射(f)的利普希茨跟踪性、等度连续、非游荡点集之间的动力学关系,得到如下结论:(1)映射f具有G-利普希茨跟踪性⇔诱导映射(f)具有利普希茨跟踪性;(2)映射f是G-等度连续的⇔诱导映射(f)是等度连续的;(3)映射f的G-非游荡点集ΩG(f)在X中稠密⇔诱导映射(f)的非游荡点集Ω((f))在X/G中稠密.
The Research of G-lipschitz Shadowing Property,G-equicontinuity and G-non-wandering Point Set
By using the properties between the mapf in metric G-space and induced map(f)in orbital space,the dynamical relationship between G-Lipschitz shadowing property,G-equicontinuity,G-non-wandering point of the mapf and Lipschitz shadowing property,equicontinuity,non-wandering point of the induced map(f)are studied.The following conclusions are obtained:(1)The map f has G-Lipschitz shadowing property if and only if the in-duced map(f)has Lipschitz shadowing property.(2)The map f is G-equicontinuous if and only if the induced map(f)is equicontinuous.(3)The G-non-wandering point set ΩG(f)of the map f is dense in X if and only if the non-wandering point set Ω((f))of the induced map(f)is dense in X/G.

G-Lipschitz shadowing propertyG-equicontinuityG-non-wandering pointorbit space

冀占江、刘海林

展开 >

梧州学院科学研究院应用数学研究团队/广西机器视觉与智能控制重点实验室,梧州 543002

江西理工大学理学院,赣州 341000

G-利普希茨跟踪性 G-等度连续 G-非游荡点 轨道空间

国家自然科学基金项目广西自然科学基金项目梧州学院校级重点项目

121264152020JJA1100212020B007

2024

华南师范大学学报(自然科学版)
华南师范大学

华南师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.413
ISSN:1000-5463
年,卷(期):2024.56(4)
  • 9