首页|结合纹理特征的深度学习混凝土裂缝识别方法

结合纹理特征的深度学习混凝土裂缝识别方法

扫码查看
混凝土的结构裂缝对结构安全性会产生重要影响,因而对混凝土裂缝进行检测监测是非常必要的.针对深度学习方法需要大量的训练样本,深度学习模型训练过程需要耗费大量时间的特性,提出一种将纹理特征与混凝土裂缝数据融合的深度学习目标检测框架.将纹理特征与预处理混凝土数据进行多数据融合,增加训练样本的特征通道数,减少模型对训练样本需求,提高模型训练速度;并在此基础上实现样本数量有限情况下的混凝土裂缝检测.通过在自制钢纤维混凝土裂缝数据集上进行试验,将该目标检测框架与未进行纹理特征融合以及与未进行预处理混凝土数据的目标检测方法进行对比.试验结果表明:本研究提出的裂缝检测方法,不仅可以大大减少训练模型所需时间,在模型训练样本较少时亦可获得较好的检测效果,检测精度也得到一定的改善.
Deep learning concrete crack identification method combined with texture features
The structural cracks of concrete have a significant influence on the structural safety,so it is necessary to detect and monitor concrete crack.Aiming at masses of training samples are needed for deep learning methods,deep learning model also need large time to train model,a deep learning target detection framework combining texture features with concrete crack data is proposed.Texture features and pre-processed concrete data are merged to increase the number of feature channels in order to reduce the demand of training samples for the model and improve training speed.Concrete crack detection can be realized under the condition of limited number of samples.Through self-made steel fiber reinforced concrete crack data set to experiment and comparison.The experimental results show that the number of parameters that need to be fitted in the model training and training time can be correspondingly reduced and the detection accu-racy has also been improved.

texture featuresdeep learningcrack identification

潘远、周双喜、黄晓生、杨丹、丁杨

展开 >

华东交通大学, 江西 南昌 330013

浙江大学, 浙江 杭州 310058

浙大城市学院, 浙江 杭州 310015

纹理特征 深度学习 裂缝识别

国家自然科学基金省主要学科学术和技术带头人

5196802220213BCJL22039

2024

混凝土
中国建筑东北设计研究院有限公司

混凝土

CSTPCD北大核心
影响因子:0.844
ISSN:1002-3550
年,卷(期):2024.(2)
  • 32