首页|基于动态机器学习的水泥胶砂性能预测研究

基于动态机器学习的水泥胶砂性能预测研究

扫码查看
辅助胶凝材料已成为水泥基材料中不可或缺的组分,然而其来源与形成条件的差异而导致的技术性质波动问题,已对材料配合比的设计效率与精确性带来了挑战.综合考虑了胶凝材料掺量、火山灰活性、颗粒尺寸与堆积关系、需水量、比表面积、烧失量、密度等原材料与配合比组成特征对水泥胶砂性能的影响,并基于动态机器学习方法进行性能预测,探索了胶凝材料组成特征的参数化表达方式及其与胶砂性能的关联权重,提出了基于胶凝材料技术性质的胶砂性能预测模型.结果表明:基于动态机器学习的数值模型可准确高效地预测水泥胶砂的新拌性能与力学性能,通过胶凝材料技术性质的关联性分析,确定了影响水泥胶砂性能的关键特征参数组合,提高了模型的泛化能力.基于关键特征参数的性能预测模型在流动度上的预测精度为 83%,在流变性能、抗压强度上的预测精度则不低于 96%.该方法有望减弱或消除原材料质量波动对材料设计与试配效率的影响,为建筑材料的智能化组成设计提供借鉴.
Research on performance prediction of cement mortar based on dynamic machine learning
Supplementary cementitious materials have become indispensable components of cement-based materials.The variation of technical properties caused by their origins and formation conditions has brought challenges to the efficiency and accuracy of material de-sign.In this study,the influence of raw material and composition characteristics such as binder dosage,pozzolanic activity,particle size and packing,water requirement ratio,specific surface area,loss on ignition,density on cement mortar was comprehensively considered,and performance prediction was conducted based on dynamic machine learning.The parameterized expression of material composition and its correlation weightings with material performances were explored,and the prediction model based on the technical properties of cementi-tious materials was proposed.The results show that the numerical model based on dynamic machine learning can accurately and efficiently predict the fresh and mechanical properties of cement mortar.Through the correlation analysis of technical properties of cementitious mate-rials,the combination of key characteristic parameters that affect the properties of cement mortar is determined,and the generalization abil-ity of the model is improved.The prediction accuracy of the performance prediction model based on key characteristic parameters is 83%in fluidity,while the prediction accuracy of rheology and compressive strength is no less than 96%.This method is expected to reduce or elim-inate the influence of raw material quality fluctuation on material design and trial efficiency and provide reference for intelligent composi-tion design of building materials.

supplementary cementitious materialmachine learningquality variationfluiditycompressive strength

赵东三、徐正中、高旭、范小春、秦月、朱兆坤、蓝少丁

展开 >

武汉理工大学 土木工程与建筑学院,湖北 武汉 430070

中山市武汉理工大学先进工程技术研究院,广东 中山 528400

辅助胶凝材料 机器学习 质量波动 流动性 抗压强度

国家自然科学基金中山市武汉理工大学先进工程技术研究院开放课题中山市引进高端科研机构创新专项

42177127WUT2020042019AG010

2024

混凝土
中国建筑东北设计研究院有限公司

混凝土

CSTPCD北大核心
影响因子:0.844
ISSN:1002-3550
年,卷(期):2024.(3)
  • 10