首页|基于物理信息神经网络的混凝土破坏准则深度学习研究

基于物理信息神经网络的混凝土破坏准则深度学习研究

扫码查看
混凝土破坏准则是工程结构设计和安全性评估的重要依据.结合一种新的深度学习框架——基于物理信息的深度学习神经网络,将混凝土破坏准则函数方程作为物理约束条件用来构造损失函数对应表征项,增加输入输出之间的物理信息驱动,更全面地反映各种因素之间的内在联系.利用大量试验数据,对深度学习模型进行训练,建立更为准确、适用性更广、更具泛化能力的混凝土破坏准则模型.结果表明:采用的物理信息深度学习神经网络模型,对混凝土破坏准则表达形式和参数有较好的优化识别能力和泛化能力,为规范修订、工程设计以及有限元数值模拟分析评估等提供参考.
Study on deep learning of concrete failure criterion based on physics-information neural newwork
The concrete failure criterion is an important basis for the design and safety evaluation of engineering structures.It combines a new deep learning framework-a deep learning neural network based on physical information,using the concrete failure criterion function equation as a physical constraint to construct the corresponding representation term of the loss function,increasing the physical information drive between input and output,and more comprehensively reflecting the internal connections between various factors.Using a large amount of experimental data,train the deep learning model to establish a more accurate,applicable,and generalizable concrete failure criterion model.The results indicate that the physical information deep learning neural network model has good optimization recognition and generalization ability for the expression form and parameters of concrete failure criteria,providing guidance and reference for standard revision,engineering design,and finite element numerical simulation analysis and evaluation.

physics-information neural network(PINN)deep learningconcretefailure criterionstructural safety

郭圣品、王辉明

展开 >

新疆大学建筑工程学院,新疆乌鲁木齐 830017

新疆建筑结构与抗震重点实验室,新疆乌鲁木齐 830017

物理信息神经网络 深度学习 混凝土 破坏准则 结构安全性

国家自然科学基金新疆建筑结构与抗震重点实验室开放课题

51568062600120004

2024

混凝土
中国建筑东北设计研究院有限公司

混凝土

CSTPCD北大核心
影响因子:0.844
ISSN:1002-3550
年,卷(期):2024.(9)