首页|基于SSA-BP算法的硫酸盐侵蚀混凝土抗压强度预测

基于SSA-BP算法的硫酸盐侵蚀混凝土抗压强度预测

扫码查看
硫酸盐侵蚀是影响混凝土耐久性最主要因素之一.基于BP神经网络方法预测硫酸盐侵蚀混凝土的抗压强度时存在误差较大、稳定性较差、权值阈值随机化、泛化能力弱等缺点,引入了麻雀搜索算法(SSA),建立SSA-BP混合算法模型,该模型可实现更为精确地预测硫酸盐侵蚀混凝土的抗压强度,并且具有强大的泛化能力.根据525组数据用来训练和测试模型,选择与材料组成、侵蚀介质以及暴露条件相关的12个影响因素作为模型输入变量,硫酸盐侵蚀混凝土后的抗压强度作为输出参数.使用均方根误差、平均绝对误差、相关系数和综合评价指标对SSA-BP混合模型预测结果进行评价,并与BP独立模型进行了对比.最后再使用66个全新的样本数据对SSA-BP模型进行泛化验证.结果表明:SSA-BP模型能有效预测硫酸盐侵蚀混凝土的抗压强度,其预测精度显著高于BP模型.本模型可为复杂环境条件下混凝土耐久性能评估提供新的预测方法.
Prediction of the compressive strength of sulfate attack concrete based on SSA-BP algorithm
Sulfate attack is one of the most important factors affecting the durability of concrete.Based on the shortcomings of the BP neu-ral network method in predicting the compressive strength of sulphate attacked concrete,such as large error,poor stability,randomization of weight thresholds and weak generalization,a hybrid SSA-BP algorithm model is established by introducing the sparrow search algorithm(SSA),which can achieve more accurate prediction of the compressive strength of sulphate attacked concrete and has more strong general-ization ability.By collecting 525 sets of data used to train and test the model,12 influencing factors related to material composition,erosion medium,and storm conditions were selected as model input variables,and the compressive strength of the concrete after sulfate erosion was used as the output parameter.The prediction results of the SSA-BP hybrid model were compared with the BP independent model by root mean square error,mean absolute error,correlation coefficient and comprehensive evaluation index.Finally,the generalization ability of the SSA-BP model was validated using 66 sets of completely new sample data.The results show that SSA-BP model can effectively predict the compressive strength of sulfate attack concrete,and its prediction accuracy is significantly higher than that of BP model.This model can pro-vide a new prediction method for concrete durability performance assessment under complex environmental conditions.

sulfate attackconcretesparrow search algorithmBP neural networkcompressive strength

金立兵、刘鹏、武甜、吴强、乔林冉、薛鹏飞

展开 >

河南工业大学 混凝土结构长期性能研究所,河南 郑州 450001

硫酸盐侵蚀 混凝土 麻雀搜索算法 BP神经网络 抗压强度

2024

混凝土
中国建筑东北设计研究院有限公司

混凝土

CSTPCD北大核心
影响因子:0.844
ISSN:1002-3550
年,卷(期):2024.(12)