首页|应用重心插值的Burgers方程数值解法

应用重心插值的Burgers方程数值解法

扫码查看
利用重心插值构造求解Burgers方程的无网格数值方法.在时间方向用Crank-Nicolson差分法对方程进行离散,在空间方向用重心插值切比雪夫配点法逼近函数本身及其空间导数.对全离散数值格式进行相容性分析.数值算例表明:与经典的有限差分方法比较,重心插值配点法用较少的节点就能达到较高的精度.
Numerical Solution Method of Burgers Equation Using Barycentric Interpolation
The meshless numerical method of Burgers equation is solved using barycentric interpolation con-struction.The equation is discretized using the Crank-Nicolson difference method in the time direction.The function is approximated to itself and so is its spatial derivative using barycentric interpolation Chebyshev collo-cation method in spatial direction.The compatibility analysis of the fully discrete numerical value scheme is perfomed.Numerical experiments show that,compared with the classical finite difference method,the bary-centric interpolation collocation method can achieve higher accuracy with fewer nodes.

Burgers equationbarycentric interpolation collocation methodCrank-Nicolson difference meth-odcompatibility analysis

滕宇航、赖艺颖、黄浪扬

展开 >

华侨大学数学科学学院,福建泉州 362021

Burgers方程 重心插值配点法 Crank-Nicolson差分法 相容性分析

2025

华侨大学学报(自然科学版)
华侨大学

华侨大学学报(自然科学版)

影响因子:0.329
ISSN:1000-5013
年,卷(期):2025.46(1)