红水河2024,Vol.43Issue(1) :102-105,111.DOI:10.3969/j.issn.1001-408X.2024.01.019

基于数据增强技术的LSTM模型变压器故障诊断研究

Transformer Fault Diagnosis of LSTM Model Based on Data Enhancement Technology

蔡晨
红水河2024,Vol.43Issue(1) :102-105,111.DOI:10.3969/j.issn.1001-408X.2024.01.019

基于数据增强技术的LSTM模型变压器故障诊断研究

Transformer Fault Diagnosis of LSTM Model Based on Data Enhancement Technology

蔡晨1
扫码查看

作者信息

  • 1. 柳州铁道职业技术学院 继续教育学院, 广西 柳州 545616
  • 折叠

摘要

为了解决变压器故障诊断中存在着依靠人工经验等方面的问题,提高变压器故障诊断的能力,笔者提出了基于数据增强的长短期记忆网络(long short-term memory,LSTM)模型的变压器故障诊断方法.首先通过数据增强技术增加数据样本量,然后利用LSTM构建变压器故障诊断模型,最后进行变压器故障诊断实验.结果表明:该方法预测的准确率、查准率、查全率及F1 值均达到 0.998;与支持向量机模型比较,各项评价指标至少提高 8%.该方法能够提高变压器故障诊断能力,有助于变压器故障的诊断与维修.

Abstract

In order to solve the problems of relying on manual experience in transformer fault diagnosis and improve the ability of transformer fault diagnosis,the author proposes a transformer fault diagnosis method based on data enhanced long short-term memory(LSTM)model.Firstly,the data sample size is increased by data enhancement technology,then the transformer fault diagnosis model is constructed by LSTM,and finally the transformer fault diagnosis experiment is carried out.The results show that the accuracy rate,precision rate,recall rate and F1 value of this method are 0.998;Compared with the support vector machine model,each evaluation index is increased by at least 8%.This method can improve the ability of transformer fault diagnosis and contribute to the diagnosis and maintenance of transformer faults.

关键词

变压器/故障诊断/数据增强/LSTM模型

Key words

transformer/fault diagnosis/data enhancement/LSTM model

引用本文复制引用

出版年

2024
红水河
广西水力发电工程学会 广西电力工业勘察设计研究院

红水河

影响因子:0.132
ISSN:1001-408X
参考文献量11
段落导航相关论文