基于蜣螂优化算法的分布式电源配置研究
Distributed Generation Configuration Based on Dung Beetle Optimizer Algorithm
郭开春 1王文学 1刘闯 2汪珂 2邓睿2
作者信息
- 1. 国网湖北省电力有限公司龙感湖区供电公司,湖北 黄冈 435503
- 2. 国网湖北省电力有限公司荆门供电公司,湖北 荆门 448001
- 折叠
摘要
为了解决分布式电源(distributed generation,DG)的配置问题,提升DG并网的经济性,笔者提出了一种基于蜣螂优化(dung beetle optimizer,DBO)算法的DG配置方法.以用户购电成本、DG投资成本、网络损耗成本和环境惩罚成本构造多目标函数,采用层次分析法确定各目标函数权重,将多目标函数转化为综合目标函数.采用DBO算法对综合目标函数进行优化,采用IEEE33 节点系统进行算例分析,并与 3 种对比算法的结果进行对比.结果表明:DBO算法优化综合目标函数的最小适应度值为 841.77 万元;相比其他对比算法,基于DBO算法的分布式电源配置效果更好.
Abstract
In order to solve the configuration problem of distributed generation(DG)and improve the economy of DG grid connection,a DG configuration method based on dung beetle optimizer(DBO)algorithm is proposed.The multi-objective function is constructed based on the user's electricity purchase cost,DG investment cost,network loss cost and environmental penalty cost.The analytic hierarchy process is used to determine the weight of each objective function,and the multi-objective function is transformed into a comprehensive objective function.The DBO algorithm is used to optimize the comprehensive objective function,and the IEEE33 node system is used for example analysis,and the results are compared with those of the three comparison algorithms.The results show that the minimum fitness value of the DBO algorithm to optimize the comprehensive objective function is 8.4177 million yuan;Compared with other comparison algorithms,the distributed generation configuration based on the DBO algorithm is better.
关键词
分布式电源/配置/蜣螂优化算法/层次分析法/综合目标函数Key words
distributed generation/configuration/dung beetle optimizer algorithm/analytic hierarchy process/comprehensive objective function引用本文复制引用
出版年
2024