首页|风机叶片缺陷识别与定位研究

风机叶片缺陷识别与定位研究

扫码查看
目前风电场风机叶片缺陷识别常规方法中的传统人工观察法、传感器检测法以及红外热成像法等,普遍存在工作量大、识别效率及准确率较低、成本高等缺点.笔者针对常规识别方法的缺点以及叶片缺陷识别的重难点,提出一种基于机器视觉结合深度学习的智能识别方法,对叶片缺陷进行检测识别定位准确率可达 90%以上,对提高风机叶片裂纹、雷击及砂眼等缺陷识别定位具有非常重要的借鉴意义.
Defect Recognition and Localization of Wind Turbine Blades
At present,the conventional methods for identifying defects in wind turbine blades in wind farms,such as traditional manual observation,sensor detection,and infrared thermal imaging technology,generally have the shortcomings of large workload,low recognition efficiency and accuracy,and high cost.Aiming at the shortcomings of conventional recognition methods and the difficulties of blade defect recognition,the authors propose an intelligent recognition method based on machine vision combined with deep learning.The accuracy of blade defect detection and recognition positioning can reach more than 90%,which is of great significance for improving the identification and positioning of defects such as cracks,lightning strikes and sand holes in wind turbine blades.

wind turbine bladedefect recognitiondeep learningmachine vision

陈丽城、李寿清

展开 >

梧州学院 机械与资源工程学院,广西 梧州 543002

广西国电投海桂新能源有限公司,广西 南宁 530025

风机叶片 缺陷识别 深度学习 机器视觉

2024

红水河
广西水力发电工程学会 广西电力工业勘察设计研究院

红水河

影响因子:0.132
ISSN:1001-408X
年,卷(期):2024.43(5)