首页|面向辐射源个体识别的多分辨率卷积网络

面向辐射源个体识别的多分辨率卷积网络

扫码查看
雷达辐射源个体识别是一种通过提取雷达硬件指纹特征来区分同类型雷达中的某特定辐射源个体的技术.但由于模型参数量过多和计算复杂度高,限制了其在实时和近实时场景下的应用.面对此问题,提出了一种轻量化的多分辨率卷积网络,该网络丰富了信号不同频域分辨率特征,从而在不增加参数或计算量的情况下,提高了识别准确率.进行了包含10个导航雷达信号的辐射源个体识别数据集实验,结果表明,提出方法与标准卷积网络相比,在不增加参数量与计算量条件下,提高了约8%的识别准确率;与多尺度网络相比,提出方法仅采用3/4的参数量和计算量,即可达到与之相当的准确率.该方法适用于航天等实时和近实时应用场景.
Multi-resolution convolutional neural network for specific emitter identification
Specific Emitter Identification(SEI)distinguishes specific emitters among identical radar types by inspecting hardware fingerprints.Deep learning-based SEI faces numerous challenges due to the large number of model parameters and complex computations,which limit its practical utility in real-time scenarios.So a light-weight multi-resolution convolutional network is proposed,which enriches the features of signals with different frequency domain resolutions,thereby improving recognition accuracy without increasing parameters or computa-tional complexity.Through experiments on a radiation source individual recognition dataset containing 10 naviga-tion radar signals,the results show that the proposed method improves recognition accuracy by about 8%com-pared to the standard convolutional network without increasing parameter and computational complexity.Com-pared with multi-scale network,the proposed method only uses 3/4 of the parameter and computational complexi-ty,achieving comparable accuracy.This method is suitable for real-time and near real-time application application scenarios such as aerospace.

radar emitterspecific emitter identificationmulti-resolution convolutional feature

崔天舒、张宏江、张游、刘航、石亮

展开 >

中国航天科技创新研究院,北京 100080

中国科学院大学,北京 100049

航天东方红卫星有限公司,北京 100089

雷达辐射源 特定辐射源识别 多分辨率特征

2024

航天电子对抗
中国航天科工集团公司8511研究所

航天电子对抗

影响因子:0.382
ISSN:1673-2421
年,卷(期):2024.40(3)