首页|时频图风格迁移跨域降噪调制识别方法研究

时频图风格迁移跨域降噪调制识别方法研究

扫码查看
信号调制识别在软件无线电中有着重要的应用.低信噪比通信信号识别率低,且改变目标域数据分布会导致降噪效果严重下降,为解决这一问题,提出一种基于时频图风格迁移跨域降噪调制识别模型.先将不同调制信号的短时傅里叶变换作为风格迁移网络的输入进行无监督降噪训练,再把降噪后的时频图送入训练好的残差神经网络进行识别,实现了通信信号调制方式的有效分类.仿真结果表明,该方法在均方误差、峰值信噪比、结构相似度等降噪指标上优于传统的小波软阈值图像降噪方法,在0 dB信噪比下,平均识别率可以达到95.375%.当改变信号相关参数后,信号源域与目标域发生改变,降噪网络依旧表现良好,实现了调制信号的跨域降噪,体现出了该算法较强的泛化性.
Research on cross domain denoising modulation recognition method for time-frequency graph style transfer
Signal modulation recognition has important applications in software radio.For low SNR ratio communication signals,the recognition rate is low.Changing the distribution of target domain data leads to a seri-ous decrease in noise reduction effect.A cross domain noise reduction modulation recognition model based on time-frequency graph style transfer is proposed to solve this problem.Firstly,the short-time Fourier transform of different modulation signals was used as input for the style transfer network for unsupervised denoising training.Then,the denoised time-frequency map was fed into the trained residual neural network for recognition,achiev-ing effective classification of communication signal modulation methods.The simulation results show that this method outperforms traditional wavelet soft thresholding image denoising methods in denoising indicators such as mean square error,peak signal-to-noise ratio,and structural similarity.At a signal-to-noise ratio of 0 dB,the av-erage recognition rate can reach 95.375%.When the signal related parameters are changed,the source and target domains of the signal change,and the denoising network still performs well,achieving cross domain denoising of the modulated signal,reflecting the strong generalization of the algorithm.

cross domaindenoisestyle transfermodulation recognition

姚怡舟、李保国、徐强、刘毅远

展开 >

国防科技大学电子科学学院,湖南 长沙 410073

武警特警学院,北京 102211

风格迁移 降噪 域适应 调制识别

2024

航天电子对抗
中国航天科工集团公司8511研究所

航天电子对抗

影响因子:0.382
ISSN:1673-2421
年,卷(期):2024.40(4)