首页|基于显隐特征互补融合的信道编码识别算法

基于显隐特征互补融合的信道编码识别算法

扫码查看
现有信道编码识别方法主要有2种,一是基于编码模型的显性编码特征提取识别方法,二是基于深度学习的隐性编码特征提取识别方法.显性方法存在自适应能力差、分类边界确定难等问题,隐性方法存在数据需求量大、迁移性弱、可解释性差等问题.为此,提出了一种基于显隐特征互补融合的信道编码识别算法.首先,基于信道编码模型提取多维显性编码特征,同时基于深度神经网络从IQ波形中提取隐性编码特征;然后,利用注意力机制将2种特征进行互补融合,利用融合特征进行最终的信道编码识别.仿真表明,该方法能够有效解决显、隐特征提取识别方法各自存在的问题,具有良好的信道编码识别效果.
Channel coding recognition algorithm based on complementary fusion of explicit and implicit features
The existing methods for channel coding identification mainly fall into two categories:one is the explicit coding feature extraction method based on coding models,and the other is the implicit coding feature ex-traction method based on deep learning.The explicit method suffers from poor adaptability and difficulty in deter-mining classification boundaries,while the implicit method has issues such as high data requirements,weak trans-ferability,and poor interpretability.To address these problems,a channel coding identification algorithm based on the complementary fusion of explicit and implicit features is proposed.Firstly,multidimensional explicit cod-ing features are extracted based on the channel coding model,while implicit coding features are extracted from IQ waveforms using a deep neural network.Then,an attention mechanism is employed to complementarily fuse these two types of features,and the fused features are used for the final channel coding identification.Simulations indicate that this method effectively addresses the shortcomings of both explicit and implicit feature extraction identification methods and demonstrates good performance in channel coding recognition.

channel coding recognitionexplicit featureimplicit featureattentioncomplementary fusion

姜科宇、黄烨轩、刘杰、方旖

展开 >

电子科技大学信息与通信工程学院,四川 成都 611731

军事科学院系统工程研究院,北京 100083

电磁空间认知与智能控制技术实验室,北京 100083

信道编码识别 显性特征 隐性特征 注意力 互补融合

2024

航天电子对抗
中国航天科工集团公司8511研究所

航天电子对抗

影响因子:0.382
ISSN:1673-2421
年,卷(期):2024.40(6)