首页|顾及样本优化选择的机器学习云检测研究

顾及样本优化选择的机器学习云检测研究

扫码查看
针对云层日变化、云类型、云相态、云光学厚度等特征差异带来的光谱差异,导致传统阈值算法对云识别精度不高的问题,文章提出了一种顾及样本优化选择,耦合物理阈值方法和机器学习的云检测算法模型,利用"葵花 8 号"卫星(Himawari-8)数据进行日间云检测。通过样本优化选择,使样本中尽可能包括不同情形下的云特征,为机器学习模型提供良好的样本基础,增加模型泛化能力;同时输入特征除了考虑反照率、亮温、亮温差以及天顶角等因素外,还加入了基于反照率和亮温差的物理阈值方法云识别结果;最后基于极限随机树模型进行云检测。结果表明:模型云检测交叉验证精度为96。41%,总漏检率和总虚检率分别为 2。08%和 0。91%;通过云-气溶胶激光雷达与红外探路者卫星观测(CALIPSO)产品数据进行对比分析,结果显示云检测总体精度为 97。1%。
Study on Machine Learning Cloud Detection Considering Optimal Selection of Samples
Aiming at the problem that the traditional threshold algorithm have low accuracy of cloud detection due to spectral differences caused by characteristic differences such as cloud diurnal variation,cloud type,cloud phase state,and cloud optical thickness,This paper proposes a cloud detection algorithm model that takes into account optimal selection of samples,coupled with the physical threshold method and machine learning,and uses the data of Himawari-8 for daytime cloud detection.Through sample optimization selection,the samples include cloud features in different situations as much as possible,providing a good sample basis for the machine learning model and increasing the model generalization ability.At the same time,in addition to considering factors such as albedo,brightness temperature,brightness temperature difference,and zenith angle,the input features also add cloud recognition results based on the physical threshold method based on albedo and brightness temperature difference.And cloud detection is carried out based on the Extremely randomized trees(ET)model.The results show that cloud detection cross-validation accuracy of the model is 96.41%,with the total omission error of 2.08%and total commission error of 0.91%,respectively.The results are compared with the product data based on CALIPSO with an overall detection accuracy of 97.1%.

sample optimizationextremely randomized treesmachine learningcloud detectionspace remote sensing

张辉、周仿荣、徐真、文刚、马御棠、韩旭、吴磊

展开 >

云南电网有限责任公司,昆明 650011

南方电网公司云南电网电力科学研究院电力遥感技术联合实验室,昆明 650217

苏州深蓝空间遥感技术有限公司,苏州 215505

样本优化 极限随机树 机器学习 云检测 航天遥感

云南省重大科技专项

202202AD080010

2024

航天返回与遥感
中国航天科技集团公司第五研究院第508研究所

航天返回与遥感

CSTPCD北大核心
影响因子:0.669
ISSN:1009-8518
年,卷(期):2024.45(1)
  • 25