首页|天基光学遥感图像的信噪比提升技术综述

天基光学遥感图像的信噪比提升技术综述

A Review of SNR Enhancement Techniques for Space-Based Remote Sensing Images

扫码查看
随着遥感技术的不断发展,天基光学遥感向全时域、智能化方向发展.微光遥感因需要在夜间和晨昏时段等低照度条件下对地物进行探测,成像具有低对比度、低亮度、低信噪比的特性.针对低信噪比特性会导致大量复杂物理噪声将图像景物特征淹没,严重影响地面目标识别与判读的情况,文章基于遥感成像的全链路物理模型,总结天基光学遥感图像信噪比提升的技术途径,分别对基于传统滤波的方式、基于物理模型的方式、基于深度学习的方式的研究现状进行分析,对比并总结各类方式中主要代表算法之间的特点及差异,对未来天基光学遥感图像信噪比提升的技术发展方向进行展望.
With the continuous development of the field of remote sensing,space-based remote sensing is developing in the direction of all-sky and intelligent.Since low-light remote sensing is used to detect ground objects under low illumination conditions such as night and morning and night periods,it results in the characteristics of low contrast,low brightness and low signal-to-noise ratio of remote sensing images,among which,low signal-to-noise ratio leads to a large number of complex physical noises drowning the image features,seriously affecting the recognition and interpretation of ground objects.This paper summarizes the actual full-link physical model based on optical remote sensing imaging and the technical approaches to improve the signal-to-noise ratio of remote sensing images,and summarizes the methods based on traditional filtering,physical model and deep learning respectively.By comparing the differences among the main representative algorithms of various methods,the paper summarizes their respective characteristics.The future development direction of the improvement of the signal-to-noise ratio of space-based remote sensing images is forecasted.

denoising algorithmfull link modelSNRremote sensing imagespace-based remote sensing

王智、魏久哲、王芸、李强

展开 >

北京空间机电研究所,北京 100094

先进光学遥感技术北京市重点实验室,北京 100094

去噪算法 全链路模型 信噪比 遥感图像 天基遥感

国家自然科学基金重点项目

62331006

2024

航天返回与遥感
中国航天科技集团公司第五研究院第508研究所

航天返回与遥感

CSTPCD北大核心
影响因子:0.669
ISSN:1009-8518
年,卷(期):2024.45(2)
  • 47