首页|基于卷积神经网络的建筑物提取

基于卷积神经网络的建筑物提取

Building Extraction Based on Convolutional Neural Network

扫码查看
利用遥感图像进行建筑物提取在城市规划、土地利用调查等领域发挥了重要作用.然而,图像中建筑物类型多样,尺度大小不一的特点给自动提取带来了较大的挑战.针对遥感图像提取中大型建筑物容易出现空洞、小型建筑物容易漏检的问题,文章设计了一种融合多尺度特征与非局部计算的方法.该方法采用编码器-解码器结构,首先利用Res2Net50 作为编码器以提高多尺度特征提取能力,然后在解码器部分引入非局部计算模块获取上下文信息,以进一步改善不同尺度建筑物的提取结果.结果表明,该方法在建筑物数据集WHU上的评价指标IoU和F1 分别达到了 89.65%和 94.55%,比改进前的UNet网络分别提高了 1.52%和 0.86%,验证了新方法的有效性.
Building extraction using remote sensing images plays an important role in urban planning,land use investigation and other fields.However,the buildings in the image are of various types and sizes,which brings great challenges to automatic extraction.In order to solve the problem of voids in large-scale buildings and missing detection in small-scale buildings in remote sensing image extraction,this paper designs a method that combines multi-scale features with non-local computation.The method adopts encoder-decoder structure.Firstly,Res2Net50 is used as the encoder to improve the multi-scale feature extraction capability,and then a non-local computing module is introduced in the decoder part to obtain context information to further improve the extraction results of buildings with different scales.The results indicate that IoU and F1 values of the proposed method on the WHU building dataset reache 89.65%and 94.55%,respectively,,which is 1.52%and 0.86%higher than that of the original UNet and proves the effectiveness of the proposed method.

building extractionmulti-scalenon-local computationremote sensing imagesremote sensing application

王芸菲

展开 >

南京理工大学,南京 210094

建筑物提取 多尺度 非局部计算 遥感图像 遥感应用

2024

航天返回与遥感
中国航天科技集团公司第五研究院第508研究所

航天返回与遥感

CSTPCD北大核心
影响因子:0.669
ISSN:1009-8518
年,卷(期):2024.45(2)
  • 22