首页|基于四维空时张量的红外小目标检测

基于四维空时张量的红外小目标检测

扫码查看
现有的红外小目标检测技术在目标检测能力、背景抑制能力和检测实时性方面存在不足,无法满足现实需求。张量分析技术已被广泛用于热红外小目标检测,并且越来越表现出了优越性,但存在三个关键问题——合适的张量结构、全面的张量分解框架、优异的实时性能。由此,文章提出了一种基于四维空时张量分解和分块项分解范数的红外小目标检测方法(BTDN-4DST):首先构造一个四维的球化空时图像块张量,奠定张量分解的数据基础;进而定义一种基于块项分解的低秩估计范数,充分挖掘背景的时空特征,对背景进行准确估计;最后,设计一个基于交替方向乘子法的求解框架并实现对该检测模型的求解。为了验证BTDN-4DST方法的检测性能,文章选取了 6 种先进的红外小目标检测方法作为对比算法,在 5 个真实的红外图像序列实验数据集上进行了广泛的实验和分析,结果显示BTDN-4DST能够快速增强弱小目标的显著性,并且能够极大程度抑制背景和噪声成分,充分证明该方法不仅在背景抑制能力和目标检测能力方面具有优越性,而且具有良好的实时检测性能,满足实际应用需求。
Infrared Small Target Detection Based on Four-Dimensional Spatial-Temporal Tensor
The existing infrared small target detection technologies have some shortcomings in terms of target detection capability,background suppression capability,and real-time performance,which fails to meet practical needs.Tensor analysis techniques have been widely used for infrared small target detection and have increasingly demonstrated superiority.However,three are three key issues,including suitable tensor structures,comprehensive tensor decomposition frameworks,and satisfactory real-time performance.Consequently,this paper proposes an infrared small target detection method based on four dimensional temporal-spatial tensor decomposition and block term decomposition-based norm(BTDN-4DST).Specifically,a four-dimensional sphered temporal-spatial image-patch tensor is firstly constructed to establish the data basis for tensor decomposition.Subsequently,a norm based on block term decomposition is defined to fully exploit the spatial-temporal characteristics of the background for accurate background estimation.Finally,an effective solution framework based on Alternating Direction Method of Multipliers is designed for solving the detection model.To validate the performance of the BTDN-4DST,six state-of-the-art infrared small target detection methods are selected as comparative algorithms,and extensive experiments and analyses are conducted on five real infrared image sequence datasets.BTDN-4DST can rapidly enhance the saliency of weak small targets and greatly suppress background and noise components,which proves that the proposed method not only excels in background suppressibility and target detectability but also exhibits satisfactory real-time detection performance,meeting practical application requirements.

infrared small target detectiontensor decompositionblock term decompositionAlternating Direction Method of Multipliers

骆源、厉小润、陈淑涵、夏超群

展开 >

浙江大学,杭州 310027

温州大学,温州 325035

红外小目标检测 张量分解 块项分解 交替方向乘子法

国家自然科学基金教育部联合基金浙江省"尖兵"研发攻关计划

621714048091B0221182023C01129

2024

航天返回与遥感
中国航天科技集团公司第五研究院第508研究所

航天返回与遥感

CSTPCD北大核心
影响因子:0.669
ISSN:1009-8518
年,卷(期):2024.45(3)