首页|基于Point Transformer v2的点云枝叶分离方法研究

基于Point Transformer v2的点云枝叶分离方法研究

扫码查看
准确高效的点云枝叶分离对精确计算森林树木的垂直参数至关重要。然而,当前的研究方法计算成本高,且依赖先验知识导致泛化能力不足。针对以上问题,文章提出利用基于点特征的Transformer网络进行自动化的森林场景三维点云的枝叶分离研究。该方法使用Point Transformer v2 网络,首先利用网格编码模块提取可学习的局部结构关系,保留点云的几何拓扑结构;其次使用分组注意力实现多通道联合学习,降低特征的冗余度,提高计算的效率;最后构建了基于点的Transformer网络实现高精度森林树木三维点云语义分割,降低了对于先验知识的需求。使用地基激光扫描仪获取的加拿大和芬兰 7 个不同树种样地的三维点云数据,进行枝叶分离实验和精度评价。实验结果表明,网络整体精度(OA)为94。42%,mIoU为 78。89%,能够适应不同树种、不同点云密度的森林场景的枝叶分离。
Research on Branch and Foliage Separation Method with Point Transformer v2
Accurate and efficient point cloud branch and foliage separation are essential for accurately calculating above-ground biomass and carbon stocks.However,current methods are computationally expensive and rely on priori knowledge leading to insufficient generalization.To address the above problems,the article proposes to use the point feature-based Transformer network for automated branch and leaf separation study in forest scene 3D point cloud.This research uses the Point Transformer v2 network.Firstly,the grid coding module is used to extract the learnable local structural relations and preserve the geometric topology of the point cloud;secondly,group attention is used to achieve multi-channel joint learning,reduce the redundancy of features and improve the efficiency of computation;finally,a point-based Transformer network is constructed to achieve high-precision semantic segmentation of 3D point clouds of forest trees,and this method is capable of accurate separation of tree trunks and leaves.In this paper,we use the 3D point cloud data of seven different tree species sample plots in Canada and Finland acquired by ground-based laser scanner to conduct branch and foliage separation experiments and accuracy evaluation,and the experimental results show that the OA of the network proposed in this paper is 94.42%,and the mIoU is 78.89%,which indicates that the network in this paper can effectively improve the segmentation accuracy of the tree crown under the conditions of irregular forest tree crown distribution and occlusion.Meanwhile,more accurate segmentation can be achieved for branch and foliage of different tree species and different point cloud densities.

3D point clouddeep learningbranch and foliage separationPoint Transformer v2

马津、陈一平、韩汀、王朝磊、张小海、张吴明

展开 >

中山大学测绘科学与技术学院,珠海 519082

中国地质调查局海口海洋地质调查中心,海口 571127

三维点云 深度学习 枝叶分离 Point Transformer v2

国家自然科学基金

42371343

2024

航天返回与遥感
中国航天科技集团公司第五研究院第508研究所

航天返回与遥感

CSTPCD北大核心
影响因子:0.669
ISSN:1009-8518
年,卷(期):2024.45(3)