首页|基于图像增强的地基观测空间目标检测方法

基于图像增强的地基观测空间目标检测方法

扫码查看
地基观测空间目标检测任务中,星图退化或星图模糊会导致检测效果不理想,而基于滤波和基于去噪的图像增强方法难以适用于因多种因素导致发生退化或模糊的星图的增强,进而影响后续的目标检测任务。针对上述问题,文章提出一种基于图像增强的地基观测空间目标检测方法,该方法由图像增强和目标检测两部分组成:1)在图像增强部分,受图像去雾深度学习模型的启发,设计了一种图像增强模型对退化参数进行估计,该模型以U-Net为基础结构进行多尺度特征提取与融合,并在网络结构中嵌入了金字塔池化模块和结构多尺度残差模块,以提高图像增强复原的质量,最后利用估计参数从发生退化的图像中复原出增强图像;2)在目标检测部分,通过快速线段检测器(Fast Line Segment Detector,FLD)算法对星图中由于目标与探测器相对运动而留下的直线段轨迹进行检测。经过实验数据集验证,采用该方法对图像增强后,图像的平均峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)和结构相似性(Structural Similarity,SSIM)指标值分别提高了 124。51%和 64。28%;图像增强前后,目标检测的平均准确度提高了 22。15%,且平均漏检率降低了 20。6%。相比于其他基于滤波和去噪进行图像增强的方法,文章所提方法能够适应多种发生星图退化或星图模糊的情况,且图像增强效果更好,目标检测精度也更高。
Image Enhancement-Based Method for Detecting Spatial Targets in Ground-Based Observations
In the task of detecting spatial targets from ground-based observation images,the degradation or blurring of the star image will lead to unsatisfactory detection results,and the image enhancement methods based on filtering and denoising are difficult to apply to the enhancement of the star image that is degraded or blurred due to various factors,which will affect the subsequent target detection tasks.In order to solve the above problems,this paper proposes a spatial objects detection method for ground-based observation based on image enhancement,which can be divided into two parts:1)In the image enhancement part,inspired by the image dehazing deep learning model,an image enhancement model is designed to estimate the degradation parameters,and the model uses U-Net as the basic structure for multi-scale feature extraction and fusion,and embeds the pyramid pooling module and the structure multi-scale residual module in the network structure to improve the quality of image enhanced and restored.Finally,the estimated parameters are used to restore the enhanced image from the degraded image.2)In the target detection part,the FLD(Fast Line segment Detector)algorithm is used to detect the straight line trajectory left by the relative motion of the target and the detector in the star image.The experimental dataset verifies that the average PSNR(Peak Signal-to-Noise Ratio)and SSIM(Structural SIMilarity)of the images enhanced by our method are increased by 124.51%and 64.28%,respectively.Before and after image enhancement and restoration,the average accuracy of object detection is increased by 22.15%,and the average missed detection rateis decreased by 20.6%.Compared with other image enhancement methods based on filtering and denoising,this method can adapt to a variety of star image degradation or star image blurring situations,has better image enhancement effect,and also achieves higher accuracy in target detection tasks.

ground-based observationsimage enhancementobjects detectionimage degradation modelPSNRSSIM

闫志龙、曹世翔、张春晓、孙豆、刘宏

展开 >

北京空间机电研究所,北京 100094

先进光学遥感技术北京市重点实验室,北京 100094

航天工程大学,北京 102206

地基观测 图像增强 目标检测 图像退化模型 峰值信噪比 结构相似性

2024

航天返回与遥感
中国航天科技集团公司第五研究院第508研究所

航天返回与遥感

CSTPCD北大核心
影响因子:0.669
ISSN:1009-8518
年,卷(期):2024.45(6)